A risk-free bond is a theoretical bond that repays interest and principal with absolute certainty. The rate of return would be the risk-free interest rate. It is primary security, which pays off 1 unit no matter state of economy is realized at time . So its payoff is the same regardless of what state occurs. Thus, an investor experiences no risk by investing in such an asset.
In practice, government bonds of financially stable countries are treated as risk-free bonds, as governments can raise taxes or indeed print money to repay their domestic currency debt. [1]
For instance, United States Treasury notes and United States Treasury bonds are often assumed to be risk-free bonds. [2] Even though investors in United States Treasury securities do in fact face a small amount of credit risk, [3] this risk is often considered to be negligible. An example of this credit risk was shown by Russia, which defaulted on its domestic debt during the 1998 Russian financial crisis.
In financial literature, it is not uncommon to derive the Black-Scholes formula by introducing a continuously rebalanced risk-free portfolio containing an option and underlying stocks. In the absence of arbitrage, the return from such a portfolio needs to match returns on risk-free bonds. This property leads to the Black-Scholes partial differential equation satisfied by the arbitrage price of an option. It appears, however, that the risk-free portfolio does not satisfy the formal definition of a self-financing strategy, and thus this way of deriving the Black-Sholes formula is flawed.
We assume throughout that trading takes place continuously in time, and unrestricted borrowing and lending of funds is possible at the same constant interest rate. Furthermore, the market is frictionless, meaning that there are no transaction costs or taxes, and no discrimination against the short sales. In other words, we shall deal with the case of a perfect market .
Let's assume that the short-term interest rate is constant (but not necessarily nonnegative) over the trading interval . The risk-free security is assumed to continuously compound in value at the rate ; that is, . We adopt the usual convention that , so that its price equals for every . When dealing with the Black-Scholes model, we may equally well replace the savings account by the risk-free bond. A unit zero-coupon bond maturing at time is a security paying to its holder 1 unit of cash at a predetermined date in the future, known as the bond's maturity date . Let stand for the price at time of a bond maturing at time . It is easily seen that to replicate the payoff 1 at time it suffices to invest units of cash at time in the savings account . This shows that, in the absence of arbitrage opportunities, the price of the bond satisfies
Note that for any fixed T, the bond price solves the ordinary differential equation
We consider here a risk-free bond, meaning that its issuer will not default on his obligation to pat to the bondholder the face value at maturity date.
The risk-free bond can be replicated by a portfolio of two Arrow-Debreu securities. This portfolio exactly matches the payoff of the risk-free bond since the portfolio too pays 1 unit regardless of which state occurs. This is because if its price were different from that of the risk-free bond, we would have an arbitrage opportunity present in the economy. When an arbitrage opportunity is present, it means that riskless profits can be made through some trading strategy. In this specific case, if portfolio of Arrow-Debreu securities differs in price from the price of the risk-free bond, then the arbitrage strategy would be to buy the lower priced one and sell short the higher priced one. Since each has exactly the same payoff profile, this trade would leave us with zero net risk (the risk of one cancels the other's risk because we have bought and sold in equal quantities the same payoff profile). However, we would make a profit because we are buying at a low price and selling at a high price. Since arbitrage conditions cannot exist in an economy, the price of the risk-free bond equals the price of the portfolio.
The calculation is related to an Arrow-Debreu security. Let's call the price of the risk-free bond at time as . The refers to the fact that the bond matures at time . As mentioned before, the risk-free bond can be replicated by a portfolio of two Arrow-Debreu securities, one share of and one share of .
Using formula for the price of an Arrow-Debreu securities
which is a product of ratio of the intertemporal marginal rate of substitution (the ratio of marginal utilities across time, it is also referred to as the state price density and the pricing kernel) and the probability of state occurring in which the Arrow-Debreu security pays off 1 unit. The price of the portfolio is simply
Therefore, the price of a risk-free bond is simply the expected value, taken with respect to the probability measure , of the intertemporal marginal rate of substitution. The interest rate , is now defined using the reciprocal of the bond price.
Therefore, we have the fundamental relation
that defines the interest rate in any economy.
Suppose that the probability of state 1 occurring is 1/4, while probability of state 2 occurring is 3/4. Also assume that the pricing kernel equals 0.95 for state 1 and 0.92 for state 2. [5]
Let the pricing kernel denotes as . Then we have two Arrow-Debreu securities with parameters
Then using the previous formulas, we can calculate the bond price
The interest rate is then given by
Thus, we see that the pricing of a bond and the determination of interest rate is simple to do once the set of Arrow-Debreu prices, the prices of Arrow-Debreu securities, are known.
In economics and finance, arbitrage is the practice of taking advantage of a difference in prices in two or more markets; striking a combination of matching deals to capitalise on the difference, the profit being the difference between the market prices at which the unit is traded. When used by academics, an arbitrage is a transaction that involves no negative cash flow at any probabilistic or temporal state and a positive cash flow in at least one state; in simple terms, it is the possibility of a risk-free profit after transaction costs. For example, an arbitrage opportunity is present when there is the possibility to instantaneously buy something for a low price and sell it for a higher price.
Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.
The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assumptions. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.
In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio.
In financial mathematics, the put–call parity defines a relationship between the price of a European call option and European put option, both with the identical strike price and expiry, namely that a portfolio of a long call option and a short put option is equivalent to a single forward contract at this strike price and expiry. This is because if the price at expiry is above the strike price, the call will be exercised, while if it is below, the put will be exercised, and thus in either case one unit of the asset will be purchased for the strike price, exactly as in a forward contract.
The Black model is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.
In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of derivatives such as options to a change in underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.
In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.
Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
Bond valuation is the determination of the fair price of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by discounting the bond's expected cash flows to the present using an appropriate discount rate.
In finance, the duration of a financial asset that consists of fixed cash flows, such as a bond, is the weighted average of the times until those fixed cash flows are received. When the price of an asset is considered as a function of yield, duration also measures the price sensitivity to yield, the rate of change of price with respect to yield, or the percentage change in price for a parallel shift in yields.
In finance, bond convexity is a measure of the non-linear relationship of bond prices to changes in interest rates, the second derivative of the price of the bond with respect to interest rates. In general, the higher the duration, the more sensitive the bond price is to the change in interest rates. Bond convexity is one of the most basic and widely used forms of convexity in finance. Convexity was based on the work of Hon-Fei Lai and popularized by Stanley Diller.
In financial mathematics, the Hull–White model is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.
Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes. This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions of the problem increase.
A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.
The Heath–Jarrow–Morton (HJM) framework is a general framework to model the evolution of interest rate curves – instantaneous forward rate curves in particular. When the volatility and drift of the instantaneous forward rate are assumed to be deterministic, this is known as the Gaussian Heath–Jarrow–Morton (HJM) model of forward rates. For direct modeling of simple forward rates the Brace–Gatarek–Musiela model represents an example.
Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options, futures, interest rate derivatives, credit derivatives, etc.
The following outline is provided as an overview of and topical guide to finance:
In finance, par yield is the yield on a fixed income security assuming that its market price is equal to par value. Par yield is used to derive the U.S. Treasury’s daily official “Treasury Par Yield Curve Rates”, which are used by investors to price debt securities traded in public markets, and by lenders to set interest rates on many other types of debt, including bank loans and mortgages.
An affine term structure model is a financial model that relates zero-coupon bond prices to a spot rate model. It is particularly useful for deriving the yield curve – the process of determining spot rate model inputs from observable bond market data. The affine class of term structure models implies the convenient form that log bond prices are linear functions of the spot rate.