Romberg's test

Last updated
Romberg's test
Spinal cord tracts - English.svg
Spinal cord tracts. Blue are afferents; red are efferents
Synonyms Romberg maneuver
Purposeexam of neurological function for balance

Romberg's test, Romberg's sign, or the Romberg maneuver is a test used in an exam of neurological function for balance. The exam is based on the premise that a person requires at least two of the three following senses to maintain balance while standing: proprioception (the ability to know one's body position in space); vestibular function (the ability to know one's head position in space); and vision (which can be used to monitor and adjust for changes in body position).

Contents

A patient who has a problem with proprioception can still maintain balance by using vestibular function and vision. In the Romberg test, the standing patient is asked to close their eyes. An increased loss of balance is interpreted as a positive Romberg's test.

The Romberg test is a test of the body's sense of positioning (proprioception), which requires healthy functioning of the dorsal columns of the spinal cord. [1]

The Romberg test is used to investigate the cause of loss of motor coordination (ataxia). A positive Romberg test suggests that the ataxia is sensory in nature, that is, depending on loss of proprioception. If a patient is ataxic and Romberg's test is not positive, it suggests that ataxia is cerebellar in nature, that is, depending on localized cerebellar dysfunction instead.

It is used as an indicator for possible alcohol or drug impaired driving and neurological decompression sickness. [2] [3] When used to test impaired driving, the test is performed with the subject estimating 30 seconds in their head. This is used to gauge the subject's internal clock and can be an indicator of stimulant or depressant use.

Procedure

Romberg's test posture Romberg.jpg
Romberg's test posture

Ask the subject to stand erect with feet together and eyes closed. Stand close by as a precaution in order to stop the person from falling over. Watch the movement of the body in relation to a perpendicular object behind the subject (corner of the room, door, window etc.). A positive sign is noted when a swaying, sometimes irregular swaying and even toppling over occurs. The essential feature is that the patient becomes more unsteady with eyes closed.

The essential features of the test are as follows:

  1. the subject stands with feet together, eyes open and hands by the sides.
  2. the subject closes the eyes while the examiner observes for a full minute.

Because the examiner is trying to elicit whether the patient falls when the eyes are closed, it is advisable to stand ready to catch the falling patient. For large subjects, a strong assistant is recommended.

Romberg's test is positive if the patient falls while the eyes are closed. Swaying is not a positive sign as it shows proprioceptive correction. [4]

Patients with a positive result are said to demonstrate Romberg's sign or Rombergism. They can also be described as Romberg's positive. The basis of this test is that balance comes from the combination of several neurological systems, namely proprioception, vestibular input, and vision. If any two of these systems are working the person should be able to demonstrate a fair degree of balance. The key to the test is that vision is taken away by asking the patient to close their eyes. This leaves only two of the three systems remaining and if there is a vestibular disorder (labyrinthine) or a sensory disorder (proprioceptive dysfunction) the patient will become much more unbalanced.

Physiology

Maintaining balance while standing in the stationary position relies on intact sensory pathways, sensorimotor integration centers and motor pathways.

The main sensory inputs are:

  1. Joint position sense (proprioception), carried in the dorsal columns of the spinal cord, the dorsal and ventral spinocerebellar tracts.
  2. Vision
  3. Vestibular apparatus

Crucially, the brain can obtain sufficient information to maintain balance if any two of the three systems are intact.

Sensorimotor integration is carried out by the cerebellum and by the dorsal column-medial lemniscus tract. The motor pathway is the corticospinal (pyramidal) tract and the medial and lateral vestibular tracts.

The first stage of the test (standing with the eyes open with hands on hips), demonstrates that at least two of the three sensory pathways are intact, and that sensorimotor integration and the motor pathway are functioning. The patient must stand unsupported with eyes open and hands on hips for 30 seconds. If the patient takes a step or removes a hand from the hip, the timer is stopped. The patient may make two attempts to complete the 30 seconds.

Similar to the sensory organization test, the visual pathway would then be removed by closing the eyes. If the proprioceptive and vestibular pathways are intact, balance will be maintained. But if proprioception is defective, two of the sensory inputs will be absent and the patient will sway then fall. Similar to the Romberg Test, the patient must stand unsupported with eyes closed and hands on hips for 30 seconds. The patient may make two attempts to complete the 30 seconds. [3]

A variation of the Romberg Test, the Sharpened Romberg Test, consists of narrowing the patient’s base of support by placing feet in a heel to toe position. Nonetheless, test instructions do not specify which foot, preferred or non-preferred, should be placed in front of the other. The patient should be instructed to keep hands on hips for the whole 30 seconds. If the patient takes a step or removes hands from hips, the timer is stopped and the patient may attempt the test one more time. [5] The sharpened Romberg does have an early learning effect that will plateau between the third and fourth attempts. [3]

Positive Romberg

Romberg's test is positive in conditions causing sensory ataxia such as:[ citation needed ]

Romberg and cerebellar function

Romberg's test is not a test of cerebellar function, as it is commonly misconstrued. Patients with severe cerebellar ataxia will generally be unable to balance even with their eyes open; [6] therefore, the test cannot proceed beyond the first step and no patient with cerebellar ataxia can correctly be described as Romberg's positive. Rather, Romberg's test is a test of the proprioception receptors and pathways function. A positive Romberg's test which will show wide base gait in patients with back pain has been shown to be 90 percent specific for lumbar spinal stenosis. [7]

History

The test was named after the German neurologist Moritz Heinrich Romberg [1] (1795–1873), who also gave his name to Parry–Romberg syndrome and Howship–Romberg sign.

See also

Related Research Articles

Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements, that indicates dysfunction of parts of the nervous system that coordinate movement, such as the cerebellum.

<span class="mw-page-title-main">Sense of balance</span> Physiological sense regarding posture

The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together; the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.

A balance disorder is a disturbance that causes an individual to feel unsteady, for example when standing or walking. It may be accompanied by feelings of giddiness, or wooziness, or having a sensation of movement, spinning, or floating. Balance is the result of several body systems working together: the visual system (eyes), vestibular system (ears) and proprioception. Degeneration or loss of function in any of these systems can lead to balance deficits.

<span class="mw-page-title-main">Brainstem</span> Posterior part of the brain, adjoining and structurally continuous

The brainstem is the stalk-like part of the brain that interconnects the cerebrum and diencephalon with the spinal cord. In the human brain, the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three', and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Tabes dorsalis</span> Medical condition of late-stage neurosyphilis

Tabes dorsalis is a late consequence of neurosyphilis, characterized by the slow degeneration of the neural tracts primarily in the dorsal root ganglia of the spinal cord. These patients have lancinating nerve root pain which is aggravated by coughing, and features of sensory ataxia with ocular involvement.

<span class="mw-page-title-main">Dorsal column–medial lemniscus pathway</span> Sensory spinal pathway

The dorsal column–medial lemniscus pathway (DCML) is a sensory pathway of the central nervous system that conveys sensations of fine touch, vibration, two-point discrimination, and proprioception from the skin and joints. It transmits information from the body to the primary somatosensory cortex in the postcentral gyrus of the parietal lobe of the brain. The pathway receives information from sensory receptors throughout the body, and carries this in nerve tracts in the white matter of the dorsal column of the spinal cord to the medulla, where it is continued in the medial lemniscus, on to the thalamus and relayed from there through the internal capsule and transmitted to the somatosensory cortex. The name dorsal-column medial lemniscus comes from the two structures that carry the sensory information: the dorsal columns of the spinal cord, and the medial lemniscus in the brainstem.

<span class="mw-page-title-main">Moritz Heinrich Romberg</span> German physician (1795–1873)

Moritz Heinrich Romberg was a German physician and neurologist who published a classic multi-volume textbook between 1840 and 1846. Considered a pioneer of neurology, he was the first to describe Romberg's sign, a medical sign of impaired proprioception in a patient.

Stereognosis is the ability to perceive and recognize the form of an object in the absence of visual and auditory information, by using tactile information to provide cues from texture, size, spatial properties, and temperature, etc. In humans, this sense, along with tactile spatial acuity, vibration perception, texture discrimination and proprioception, is mediated by the dorsal column-medial lemniscus pathway of the central nervous system. Stereognosis tests determine whether or not the parietal lobe of the brain is intact. Typically, these tests involved having the patient identify common objects placed in their hand without any visual cues. Stereognosis is a higher cerebral associative cortical function.

<span class="mw-page-title-main">Inferior cerebellar peduncle</span>

The upper part of the posterior district of the medulla oblongata is occupied by the inferior cerebellar peduncle, a thick rope-like strand situated between the lower part of the fourth ventricle and the roots of the glossopharyngeal and vagus nerves.

Dysmetria is a lack of coordination of movement typified by the undershoot or overshoot of intended position with the hand, arm, leg, or eye. It is a type of ataxia. It can also include an inability to judge distance or scale.

Sensory ataxia is both a symptom and a sign in neurology. It is a form of ataxia caused not by cerebellar dysfunction but by loss of sensory input into the control of movement.

<span class="mw-page-title-main">Flocculus</span>

The flocculus is a small lobe of the cerebellum at the posterior border of the middle cerebellar peduncle anterior to the biventer lobule. Like other parts of the cerebellum, the flocculus is involved in motor control. It is an essential part of the vestibulo-ocular reflex, and aids in the learning of basic motor skills in the brain.

<span class="mw-page-title-main">Vestibulospinal tract</span> Neural tract in the central nervous system

The vestibulospinal tract is a neural tract in the central nervous system. Specifically, it is a component of the extrapyramidal system and is classified as a component of the medial pathway. Like other descending motor pathways, the vestibulospinal fibers of the tract relay information from nuclei to motor neurons. The vestibular nuclei receive information through the vestibulocochlear nerve about changes in the orientation of the head. The nuclei relay motor commands through the vestibulospinal tract. The function of these motor commands is to alter muscle tone, extend, and change the position of the limbs and head with the goal of supporting posture and maintaining balance of the body and head.

<span class="mw-page-title-main">Posterior thoracic nucleus</span>

The posterior thoracic nucleus, is a group of interneurons found in the medial part of lamina VII, also known as the intermediate zone, of the spinal cord. It is mainly located from the cervical vertebra C7 to lumbar L3–L4 levels and is an important structure for proprioception of the lower limb.

In medicine, physiotherapy, chiropractic, and osteopathy the hip examination, or hip exam, is undertaken when a patient has a complaint of hip pain and/or signs and/or symptoms suggestive of hip joint pathology. It is a physical examination maneuver.

<span class="mw-page-title-main">Balance (ability)</span> Ability to maintain the line of gravity of a body

Balance in biomechanics, is an ability to maintain the line of gravity of a body within the base of support with minimal postural sway. Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body or from external triggers. An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control.

There are two frequently used placing reflexes. They are tests which allow clinicians to assess the proprioceptive abilities of small domestic animals. The first test is to lift an animal and bring the anterior/dorsal surface of a paw up to a table edge. The normal animal will position its paw onto the surface properly. The second is similar. The dorsal (top) surface of an animals paw is placed onto a surface, and a fully healthy animal would flick it back up to be in the normal position. If the animal cannot do this it implies that there is either a motor deficit or damage to the sensory pathway for proprioception, or damage to the centres of the brain which would normally integrate this response. These brain centres would include the cerebellum, and possibly (debated) portions of the cerebrum. There is no evidence to suggest whether the cerebrum is specifically involved with this reflex. Evidence for the involvement of the cerebellum comes, in part, from the fact that cerebellar ataxia can lead to a loss of this particular reflex.

<span class="mw-page-title-main">Proprioception</span> Sense of self-movement, force, and body position

Proprioception is the sense of self-movement, force, and body position.

Bruns apraxia, or frontal ataxia, is a gait apraxia found in patients with bilateral frontal lobe disorders. It is characterised by an inability to initiate the process of walking, despite the power and coordination of the legs being normal when tested in the seated or lying position. The gait is broad-based with short steps with a tendency to fall backwards. It was originally described in patients with frontal lobe tumours, but is now more commonly seen in patients with cerebrovascular disease.

References

  1. 1 2 3 Khasnis A, Gokula RM (1 April 2003). "Romberg's test". Journal of Postgraduate Medicine. 49 (2): 169–72. PMID   12867698.
  2. Bridge, Carl J (1972). Alcoholism and Driving. Charles C Thomas. ISBN   0-398-02243-7.
  3. 1 2 3 Lee CT (September 1998). "Sharpening the Sharpened Romberg". SPUMS Journal. 28 (3): 125–32. PMID   11542272. Archived from the original on September 20, 2008.{{cite journal}}: CS1 maint: unfit URL (link)
  4. Lanska DJ, Goetz CG (October 2000). "Romberg's sign: development, adoption, and adaptation in the 19th century". Neurology. 55 (8): 1201–6. doi:10.1212/wnl.55.8.1201. PMID   11071500. S2CID   25149021.
  5. E. Panaretaki; S. Kostadakos; V. Hatzitaki; G. Grouios. "Standing with one foot in front of the other (sharpened romberg position) : footedness effect". Centro Esportivo Virtual - CEV.
  6. Blumenfeld H. Romberg Test. neuroexam.com. URL: http://www.neuroexam.com/content.php?p=37 Archived 2007-03-06 at the Wayback Machine . Accessed on: April 22, 2007.
  7. Katz JN, Harris MB (February 2008). "Clinical practice. Lumbar spinal stenosis". N. Engl. J. Med. 358 (8): 818–25. doi:10.1056/NEJMcp0708097. PMID   18287604.