Hearing test

Last updated
Hearing test
HearingExam.jpg
A hearing health professional conducting an audiometric hearing test in a sound-treated testing booth
ICD-10-PCS F13Z
ICD-9-CM 95.41
MeSH D006320


A hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies. There are other hearing tests as well, e.g., Weber test and Rinne test.

Contents

Ear examination

Prior to the hearing test, the ears of the patient are usually examined with an otoscope to make sure they are free of wax, that the eardrum is intact, the ears are not infected, and the middle ear is free of fluid (indicating middle ear infection).[ citation needed ]

Pure tone audiometry

The standard and most common type of hearing test is pure tone audiometry, which measures the air and bone conduction thresholds for each ear in a set of 8 standard frequencies from 250Hz to 8000Hz. The test is conducted in a sound booth using either a pair of foam inserts or supraural headphones connected to an external audiometer. The result of the test is an audiogram diagram which plots a person's hearing sensitivity at the tested frequencies. On an audiogram an "x" plot represents the softest threshold heard at each specific frequency in the left ear, and an "o" plot represents the softest threshold heard at each specific frequency in the right ear. There is also a high frequency version of the test which tests frequencies over 8000Hz to 16000Hz which may be employed in special circumstances.[ citation needed ]

In-situ audiometry using mobile applications

The availability of stereo headphones and smartphones or tablets equipped with sound reproduction systems led to the appearance of new audiologic diagnostic methods which help people identify their degree of hearing loss without assistance. For users of these mobile devices, there are a number of applications available with a function for audiometric hearing testing. There are also hearing aid applications with a built-in hearing test for making hearing aid adjustments.

In the process of hearing test with specialized applications, initial hearing thresholds of perception of tone signals on different frequencies (audiogram) are identified.

Hearing thresholds, like with traditional audiometry, and with a special application, are determined on a standard set of frequencies from 125 Hz to 8 kHz. Also, an application can be integrated with a function for testing the relevance of perception of separate sounds and figures of intelligibility in various acoustic conditions

Technically, the hearing test application consists of the following blocks:

Hearing test results obtained through the application will be in error as compared to the results of hearing test conducted by an audiologist because of the following reasons:

Advantages of the audiometry conducted with a specialized application or hearing aid application include availability and possibility to do the hearing test without assistance. [2]

Despite possible errors in the results of diagnostics, the undoubted advantages of hearing testing with a special application or hearing aid application include the ability to do the hearing test without assistance and the availability of hearing testing. [2]

Scientists suggest that the hearing test using a mobile application can be used to identify hearing pathologies and also for hearing screening tests. [3] [4]

Weber and Rinne

A complete hearing evaluation involves several other tests as well. [5] In order to determine what kind of hearing loss is present, a bone conduction hearing test is administered. In this test, a vibrating tuning fork is placed behind the ear, on the mastoid process. When the patient can no longer feel/hear the vibration, the tuning fork is held in front of the ear; the patient should once more be able to hear a ringing sound. If they cannot, there is conductive hearing loss in that ear. Additionally, the tuning fork is placed on the forehead. The patient is then asked if the sound is localised in the centre of the head or whether it is louder in either ear. If there is conductive hearing loss, it is likely to be louder in the affected ear; if there is sensorineural hearing loss, it will be quieter in the affected ear. This test helps the audiologist determine whether the hearing loss is conductive (caused by problems in the outer or middle ear) or sensorineural (caused by problems in the cochlea, the sensory organ of hearing) or neural - caused by a problem in the auditory nerve or auditory pathways/cortex of the brain.

Hearing in Noise

The Hearing in Noise Test (HINT) measures a person's ability to hear speech in quiet and in noise. [6] In the test, the patient is required to repeat sentences both in a quiet environment and with competing noise being presented from different directions. More specifically, there are four conditions: (1) sentences with no competing noise, (2) sentences with competing noise presented directly in front of the patient, (3) noise presented at 90° to the right of the patient, and (4) noise presented at 90° to the left of the patient. The test measures signal-to-noise ratio for the different conditions which corresponds to how loud the sentences needed to be played above the noise so that the patient can repeat them correctly 50% of the time.

Words-in-Noise Test

The Words-in-Noise Test (WIN) uses monosyllabic words presented at seven different signal-to-noise ratios with masking noise - typically speech spectrum noise. [7] The WIN test will yield a score for a person's ability to understand speech in a noisy background. Unlike a pure-tone audiogram, the WIN test may provide a more functional test of a person's hearing in a situation that is likely to occur. [3]

Modified Rhyme Test

The Modified Rhyme Test (MRT) is defined in the American National Standard ANSI S3.2 Methods for Measuring the Intelligibility of Speech Over Communication Systems. [8] The method consists of 50 sets of six monosyllabic words that differ in initial or final consonant (e.g. not, tot, got, pot, hot, lot or ray, raze, rate, rave, rake, race). The listener is typically presented with one of the words in the couplet preceded by a phrase, "You will mark the word ___". The six words that rhyme are presented to the listener to select what they believe to be the correct answer. The MRT has been extensively used by the US Air Force to test the performance of different communication systems, which often include a noise interference component. If a condition achieves a score of 80% correct responses or better, then that is often an acceptable performance level.[ citation needed ]

Other

Related Research Articles

<span class="mw-page-title-main">Hearing loss</span> Partial or total inability to hear

Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to acquire spoken language, and in adults it can create difficulties with social interaction and at work. Hearing loss can be temporary or permanent. Hearing loss related to age usually affects both ears and is due to cochlear hair cell loss. In some people, particularly older people, hearing loss can result in loneliness.

<span class="mw-page-title-main">Hearing aid</span> Electroacoustic device

A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers such as personal sound amplification products (PSAPs) or other plain sound reinforcing systems cannot be sold as "hearing aids".

<span class="mw-page-title-main">Conductive hearing loss</span> Medical condition

Conductive hearing loss (CHL) occurs when there is a problem transferring sound waves anywhere along the pathway through the outer ear, tympanic membrane (eardrum), or middle ear (ossicles). If a conductive hearing loss occurs in conjunction with a sensorineural hearing loss, it is referred to as a mixed hearing loss. Depending upon the severity and nature of the conductive loss, this type of hearing impairment can often be treated with surgical intervention or pharmaceuticals to partially or, in some cases, fully restore hearing acuity to within normal range. However, cases of permanent or chronic conductive hearing loss may require other treatment modalities such as hearing aid devices to improve detection of sound and speech perception.

<span class="mw-page-title-main">Sensorineural hearing loss</span> Hearing loss caused by an inner ear or vestibulocochlear nerve defect

Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear, sensory organ, or the vestibulocochlear nerve. SNHL accounts for about 90% of reported hearing loss. SNHL is usually permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used depending on the shape of the audiogram, such as high frequency, low frequency, U-shaped, notched, peaked, or flat.

<span class="mw-page-title-main">Audiometry</span> Branch of audiology measuring hearing sensitivity

Audiometry is a branch of audiology and the science of measuring hearing acuity for variations in sound intensity and pitch and for tonal purity, involving thresholds and differing frequencies. Typically, audiometric tests determine a subject's hearing levels with the help of an audiometer, but may also measure ability to discriminate between different sound intensities, recognize pitch, or distinguish speech from background noise. Acoustic reflex and otoacoustic emissions may also be measured. Results of audiometric tests are used to diagnose hearing loss or diseases of the ear, and often make use of an audiogram.

Auditory neuropathy (AN) is a hearing disorder in which the outer hair cells of the cochlea are present and functional, but sound information is not transmitted sufficiently by the auditory nerve to the brain. The cause may be several dysfunctions of the inner hair cells of the cochlea or spiral ganglion neuron levels. Hearing loss with AN can range from normal hearing sensitivity to profound hearing loss.

Presbycusis, or age-related hearing loss, is the cumulative effect of aging on hearing. It is a progressive and irreversible bilateral symmetrical age-related sensorineural hearing loss resulting from degeneration of the cochlea or associated structures of the inner ear or auditory nerves. The hearing loss is most marked at higher frequencies. Hearing loss that accumulates with age but is caused by factors other than normal aging is not presbycusis, although differentiating the individual effects of distinct causes of hearing loss can be difficult.

<span class="mw-page-title-main">Audiogram</span> Graph showing audible frequencies

An audiogram is a graph that shows the audible threshold for standardized frequencies as measured by an audiometer. The Y axis represents intensity measured in decibels (dB) and the X axis represents frequency measured in hertz (Hz). The threshold of hearing is plotted relative to a standardised curve that represents 'normal' hearing, in dB(HL). They are not the same as equal-loudness contours, which are a set of curves representing equal loudness at different levels, as well as at the threshold of hearing, in absolute terms measured in dB SPL.

<span class="mw-page-title-main">Audiometer</span> Machine used to evaluate hearing sensitivity

An audiometer is a machine used for evaluating hearing acuity. They usually consist of an embedded hardware unit connected to a pair of headphones and a test subject feedback button, sometimes controlled by a standard PC. Such systems can also be used with bone vibrators to test conductive hearing mechanisms.

<span class="mw-page-title-main">Tympanometry</span> Acoustic evaluation of the condition of the middle ear

Tympanometry is an acoustic evaluation of the condition of the middle ear eardrum and the conduction bones by creating variations of air pressure in the ear canal.

<span class="mw-page-title-main">Hearing range</span> Range of frequencies that can be heard by humans or other animals

Hearing range describes the frequency range that can be heard by humans or other animals, though it can also refer to the range of levels. The human range is commonly given as 20 to 20,000 Hz, although there is considerable variation between individuals, especially at high frequencies, and a gradual loss of sensitivity to higher frequencies with age is considered normal. Sensitivity also varies with frequency, as shown by equal-loudness contours. Routine investigation for hearing loss usually involves an audiogram which shows threshold levels relative to a normal.

<span class="mw-page-title-main">Auditory brainstem response</span> Auditory phenomenon in the brain

The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA) or brainstem auditory evoked potentials (BAEPs) or brainstem auditory evoked responses (BAERs) is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp. The measured recording is a series of six to seven vertex positive waves of which I through V are evaluated. These waves, labeled with Roman numerals in Jewett and Williston convention, occur in the first 10 milliseconds after onset of an auditory stimulus. The ABR is considered an exogenous response because it is dependent upon external factors.

<span class="mw-page-title-main">Pure-tone audiometry</span> Medical test

Pure-tone audiometry is the main hearing test used to identify hearing threshold levels of an individual, enabling determination of the degree, type and configuration of a hearing loss and thus providing a basis for diagnosis and management. Pure-tone audiometry is a subjective, behavioural measurement of a hearing threshold, as it relies on patient responses to pure tone stimuli. Therefore, pure-tone audiometry is only used on adults and children old enough to cooperate with the test procedure. As with most clinical tests, standardized calibration of the test environment, the equipment and the stimuli is needed before testing proceeds. Pure-tone audiometry only measures audibility thresholds, rather than other aspects of hearing such as sound localization and speech recognition. However, there are benefits to using pure-tone audiometry over other forms of hearing test, such as click auditory brainstem response (ABR). Pure-tone audiometry provides ear specific thresholds, and uses frequency specific pure tones to give place specific responses, so that the configuration of a hearing loss can be identified. As pure-tone audiometry uses both air and bone conduction audiometry, the type of loss can also be identified via the air-bone gap. Although pure-tone audiometry has many clinical benefits, it is not perfect at identifying all losses, such as ‘dead regions’ of the cochlea and neuropathies such as auditory processing disorder (APD). This raises the question of whether or not audiograms accurately predict someone's perceived degree of disability.

Minimum audibility curve is a standardized graph of the threshold of hearing frequency for an average human, and is used as the reference level when measuring hearing loss with an audiometer as shown on an audiogram.

<span class="mw-page-title-main">Hearing</span> Sensory perception of sound by living organisms

Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science.

<span class="mw-page-title-main">Real ear measurement</span>

Real ear measurement is the measurement of sound pressure level in a patient's ear canal developed when a hearing aid is worn. It is measured with the use of a silicone probe tube inserted in the canal connected to a microphone outside the ear and is done to verify that the hearing aid is providing suitable amplification for a patient's hearing loss. The American Speech–Language–Hearing Association (ASHA) and American Academy of Audiology (AAA) recommend real ear measures as the preferred method of verifying the performance of hearing aids. Used by audiologists and other hearing healthcare practitioners in the process of hearing aid fitting, real ear measures are the most reliable and efficient method for assessing the benefit provided by the amplification. Measurement of the sound level in the ear canal allows the clinician to make informed judgements on audibility of sound in the ear and the effectiveness of hearing aid treatment.

Visual reinforcement audiometry (VRA) is a key behavioural test for evaluating hearing in young children. First introduced by Liden and Kankkunen in 1969, VRA is a good indicator of how responsive a child is to sound and speech and whether the child is developing awareness to sound as expected. Performed by an audiologist, VRA is the preferred behavioral technique for children that are 6 – 24 months of age. Using classic operant conditioning, a stimulus is presented, which is followed by a 90 degree head turn from midline by the child, resulting in the child being reinforced with an animation. The child is typically seated in a high chair or on a parent's lap while facing forward. A loud speaker or two are situated at 45 or 90 degrees from the child. As the auditory stimulus is presented, the child will naturally search for the sound source, resulting in a head turn and reinforcement is followed shortly after through an animated toy or video next to the speaker where the auditory stimulus was presented. Using VRA, an audiologist can obtain minimal hearing thresholds ranging in frequencies from 250 Hz - 8000 Hz using speakers, headphones, inserts earphones or through a bone conduction transducer and plot them on an audiogram. The results from the audiogram, paired with other objective measures such as a Tympanogram, Otoacoustic emissions testing and/or Auditory Brainstem Response testing can provide further insight into the child's auditory hearing status as well as future treatment plans if deemed necessary. VRA works well until about 18–24 months of age. Above 18–24 months of age, children need more interesting tasks to hold their attention, which is when audiologists introduce Conditioned Play Audiometry.

Conditioned play audiometry (CPA) is a type of audiometry done in children from ages 2 to 5 years old, in developmental age. It is the test that directly follows visual reinforcement audiometry when the child becomes able to focus on a task. It is a type of behavioral hearing test, of which there are many.

Acoustic trauma is the sustainment of an injury to the eardrum as a result of a very loud noise. Its scope usually covers loud noises with a short duration, such as an explosion, gunshot or a burst of loud shouting. Quieter sounds that are concentrated in a narrow frequency may also cause damage to specific frequency receptors. The range of severity can vary from pain to hearing loss.

<span class="mw-page-title-main">Diagnosis of hearing loss</span> Medical testing

Identification of a hearing loss is usually conducted by a general practitioner medical doctor, otolaryngologist, certified and licensed audiologist, school or industrial audiometrist, or other audiometric technician. Diagnosis of the cause of a hearing loss is carried out by a specialist physician or otorhinolaryngologist.

References

  1. Kiessling, Jürgen; Leifholz, Melanie; Unkel, Steffen; Pons-Kühnemann, Jörn; Jespersen, Charlotte Thunberg; Pedersen, Jenny Nesgaard (2015). "A comparison of conventional and in-situ audiometry on participants with varying levels of sensorineural hearing loss". Journal of the American Academy of Audiology. 26 (1): 68–79. doi:10.3766/jaaa.26.1.8. ISSN   2157-3107. PMID   25597462.
  2. 1 2 "In-situ Thresholds for Hearing Aid Fittings". Hearing Review. November 2012. Retrieved 2019-05-26.
  3. 1 2 van Tonder, Jessica; Swanepoel, De Wet; Mahomed-Asmail, Faheema; Myburgh, Hermanus; Eikelboom, Robert H. (2017). "Automated Smartphone Threshold Audiometry: Validity and Time Efficiency". Journal of the American Academy of Audiology. 28 (3): 200–208. doi:10.3766/jaaa.16002. hdl: 2263/60435 . ISSN   2157-3107. PMID   28277211. S2CID   3795810.
  4. Bright, Tess; Pallawela, Danuk (2016-12-23). "Validated Smartphone-Based Apps for Ear and Hearing Assessments: A Review". JMIR Rehabilitation and Assistive Technologies. 3 (2): e13. doi: 10.2196/rehab.6074 . ISSN   2369-2529. PMC   5454564 . PMID   28582261.
  5. Yueh, B; Shapiro N; MacLean CH; Shekelle PG (April 2003). "Screening and management of adult hearing loss in primary care: scientific review". Journal of the American Medical Association. 289 (15): 1976–1985. doi:10.1001/jama.289.15.1976. PMID   12697801.
  6. Nilsson, M.; Soli, S. D.; Sullivan, J. A. (1994). "Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise". The Journal of the Acoustical Society of America. 95 (2): 1085–1099. Bibcode:1994ASAJ...95.1085N. doi:10.1121/1.408469. PMID   8132902.
  7. Wilson, Richard H.; Carnell, Crystal S.; Cleghorn, Amber L. (2007). "The Words-in-Noise (WIN) Test with Multitalker Babble and Speech Spectrum Noise Maskers" (PDF). J Am Acad Audiol. 18 (6): 522–529. doi:10.3766/jaaa.18.6.7. PMID   17849640. Archived from the original (PDF) on 2021-05-18. Retrieved 2019-02-19.
  8. "ANSI/ASA S3.2-2009 (R2014) Method For Measuring The Intelligibility Of Speech Over Communication Systems". American National Standards Institute, Acoustical Society of America. 2014.{{cite journal}}: Cite journal requires |journal= (help)