Relative energy deficiency in sport

Last updated
Symptoms of RED-S. RED-S EN.svg
Symptoms of RED-S.

Relative energy deficiency in sport (RED-S) [1] [2] is a syndrome in which disordered eating (or low energy availability), [3] amenorrhoea/oligomenorrhoea (in women), and decreased bone mineral density (osteoporosis and osteopenia) are present. [4] It is caused by eating too little food to support the amount of energy being expended by an athlete, often at the urging of a coach or other authority figure who believes that athletes are more likely to win competitions when they have an extremely lean body type. RED-S is a serious illness with lifelong health consequences and can potentially be fatal. [5]

Contents

RED-S is the broader, more comprehensive name for what was formerly known as the female athlete triad (or simply the triad), which was a condition seen in females participating in sports that emphasize leanness or low body weight. [1] [6] As the non-menstrual components are also seen in males, the name was changed to the comprehensive term RED-S. [1]

Classification

Formerly known as the female athlete triad, RED-S is a syndrome of three interrelated conditions. Thus, if an athlete is suffering from one element of the triad, it is likely that they are suffering from the other two components of the triad as well. [7]

With the increase in female participation in sports, [8] the incidence of a triad of disorders particular to women—the female athlete triad—has also increased. [9] The female athlete triad and its relationship with athletics was identified in the 1980s as the prevalence increased during this period, and symptoms, risk factors, causes, and treatments were studied in depth and their relatedness evaluated. The condition is most common in sports that emphasize leanness, such as cross country running, gymnastics, and figure skating. [10] Many of those who suffer from the triad are involved in some sort of athletics, in order to promote weight loss and leanness. The competitive sports that promote this physical leanness may result in disordered eating and be responsible for the origin of the female athlete triad.

For some women, the disorder can have major health consequences. [11] In addition, for some competitive female athletes, problems such as low self-esteem, a tendency toward perfectionism, and family stress place them at risk for disordered eating. [11]

Signs and symptoms

Clinical symptoms of RED-S may include disordered eating, fatigue, hair loss, cold hands and feet, dry skin, noticeable weight loss, increased healing time from injuries (e.g., lingering bruises), increased incidence of bone fracture and cessation of menses. [12] Affected athletes may also struggle with low self-esteem and depression.

Upon physical examination, a physician may also note the following symptoms: elevated carotene in the blood, anemia, orthostatic hypotension, electrolyte irregularities, hypoestrogenism, vaginal atrophy, and bradycardia. [4] [5]

An athlete may show signs of restrictive eating, but not meet the clinical criteria for an eating disorder. They may also display subtle menstrual disturbances, such as a change in menstrual cycle length, anovulation, or luteal phase defects, but not yet have developed complete amenorrhea. Likewise, an athlete's bone density may decrease, but may not yet have dropped below her age-matched normal range. These signs can be considered "occult," as no one symptom may be severe enough to seek medical attention, leaving the triad to go unnoticed or untreated. [7]

Disordered eating

Energy availability is defined as energy intake minus energy expended. Energy is taken in through food consumption. Bodies expend energy through normal functioning as well as through exercise. In the case of RED-S, low energy availability may be due to eating disorders, but not necessarily so. Athletes may experience low energy availability by exercising more without a concomitant change in eating habits, or they may increase their energy expenditure while also eating less. [4] Disordered eating is defined among this situation due to the low caloric intake or low energy availability.

While most athletes do not meet the clinical criteria to be diagnosed with an eating disorder such as anorexia nervosa or bulimia nervosa, many will exhibit disordered eating habits such as fasting, as well as avoiding certain types of food the athlete thinks are "bad" (such as foods containing fat). [11] [5] There are multiple factors that play in encouraging athletes to aim for a more lean body type, such as the culture and the individual. [13] More severe examples of disordered eating habits may include binge-eating; purging; and the use of diet-pills, laxatives, diuretics, and enemas. [4]

By restricting their diet, the athlete may worsen their problem of low energy availability. Having low dietary energy from excessive exercise or dietary restrictions leaves too little energy for the body to carry out normal functions such as maintaining a regular menstrual cycle or healthy bone density. [4]

Amenorrhea

Amenorrhea, defined as the cessation of the menstrual cycle for more than three months, is the second disorder in the triad. Weight fluctuations from dietary restrictions and/or excessive exercise affect the hypothalamus' output of gonadotropic hormones. Gonadotropic hormones “stimulate growth of the gonads and the secretion of sex hormones”, [14] (e.g. gonadotropin-releasing hormone, lutenizing hormone and follicle stimulating hormone). These gonadotropic hormones play a role in stimulating estrogen release from the ovaries. Without estrogen release, the menstrual cycle is disrupted. [15] Exercising intensely and not eating enough calories can lead to decreases in estrogen, the hormone that helps to regulate the menstrual cycle. As a result, periods may become irregular or stop altogether. [11]

There are two types of amenorrhea. A person who has been having her period and then stops menstruating for ninety days or more is said to have secondary amenorrhea. In the case of RED-S, the majority of secondary amenorrhea cases are attributed to functional hypothalamic amenorrhea (FHA), an adaptive mechanism to preserve energy for survival and vital processes rather than reproduction when energy balance is low. [16] [13] Primary amenorrhea is characterized by delayed menarche (the onset of menses during puberty). Delayed menarche may be associated with delay of the development of secondary sexual characteristics. [4]

Osteoporosis

Osteoporosis is defined by the National Institutes of Health as ‘‘a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture.’’ [17] Low estrogen levels and poor nutrition, especially low calcium intake, can lead to osteoporosis, the third aspect of the triad. This condition can ruin an athlete's career because it may lead to stress fractures and other injuries. [11]

Patients with RED-S get osteoporosis due to hypoestrogenemia, or low estrogen levels. With estrogen deficiency, the osteoclasts live longer and are therefore able to resorb more bone. In response to the increased bone resorption, there is increased bone formation and a high-turnover state develops which leads to bone loss and perforation of the trabecular plates. [18] As osteoclasts break down bone, patients see a loss of bone mineral density. Low bone mineral density renders bones more brittle and hence susceptible to fracture. Because athletes are active and their bones must endure mechanical stress, the likelihood of experiencing bone fracture is particularly high. [4]

Additionally, because those suffering with RED-S are also restricting their diet, they may also not be consuming sufficient amounts vitamins and minerals which contribute to bone density; not getting enough calcium or vitamin D further exacerbates the problem of weak bones. [5]

Bone mass is now thought to peak between the ages of 18 and 25. Thus, behaviors which result in low bone density in youth could be detrimental to an athlete's bone health throughout their lifetime. [5]

In addition, ovulation is the primary way that females create the hormone progesterone. When an ovum is released from the ovary, the structure that remains develops into the corpus luteum. The corpus luteum emits the hormone progesterone during the 10–16 days of the luteal phase. Without experiencing regular, ovulatory menstrual cycles, the female is not secreting the hormone progesterone during the luteal phase of her cycle. Progesterone directly stimulates osteoblasts to make new bone. Therefore, if the woman is not ovulating, she is not creating progesterone, and misses out on this opportunity to stimulate new bone growth. [19]

Causes

Gymnastics, figure skating, ballet, diving, swimming, and long-distance running are examples of sports which emphasize low body weight. [5] The triad is seen more often in aesthetic sports such as these versus ball game sports. [5] People taking part in these sports may be at an increased risk for developing RED-S. [5]

Athletes at greatest risk for low energy availability are those who restrict dietary energy intake, who exercise for prolonged periods, who are vegetarian, and who limit the types of food they will eat. [20] Many factors appear to contribute to disordered eating behaviors and clinical eating disorders. [20] Dieting is a common entry point and interest has focused on the contribution of environmental and social factors, psychological predisposition, low self-esteem, family dysfunction, abuse, biological factors, and genetics. [20] Additional factors for athletes include early start of sport-specific training and dieting, injury, and a sudden increase in training volume. Surveys show more negative eating attitude scores in athletic disciplines favoring leanness. [20] Disordered eating behaviors are risk factors for eating disorders. [20]

Treatment

The underlying cause of the RED-S is an imbalance between energy taken into the body (through nutrition) and energy used by the body (through exercise). The treatment includes correcting this imbalance by either increasing calories in a diet or by decreasing calories burned by exercise for 12 months or longer. Typically, it is recommended that athletes increase their consumption of calories by 300–600 kcal per day in the early stages of treatment, but there is no standard when it comes to increasing calories over time. [21] Part of the treatment includes an assessment that determines the cause of low energy availability, as treatment needs to be specialized based on the presence of disordered eating or an eating disorder. [22] Persons with RED-S should get treatment from a multi-disciplinary team that includes a physician, dietitian, and mental health counselor, and seek support from family, friends, and their coach. It is important that physicians are aware of the signs of refeeding syndrome, as this can be life-threatening if not detected early. [21]

Because a symptom of the RED-S is menstrual dysfunction, some physicians may recommend oral contraceptives because those pills will regulate the menstrual cycle. However, the underlying cause of the menstrual disorder is an energy imbalance, and using pills to regulate the menstrual cycle without changes in diet and behavior is likely to mask the food deficiency and delay appropriate treatment. A menstruating person taking contraceptives to treat menstrual dysfunction without correcting this energy imbalance will continue to lose bone density. Bone density should be measured using dual-energy X-ray absorpitiometry (DEXA) to determine severity of bone loss, especially if there is an absence of menstruation. [21]

Decreasing energy expenditure

Continued participation in training and competition depends on the physical and mental health of the athlete. [23] Athletes who weigh less than 80 percent of their ideal body weight may not be able to safely participate. [23]

Persons with RED-S are often asked by health care providers to reduce the amount of time they spend exercising by 10–12 percent. [5]

Increasing energy intake

Low energy availability with or without eating disorders, functional hypothalamic amenorrhea, and osteoporosis, alone or in combination, pose significant health risks to physically active girls and women. Prevention, recognition, and treatment of these clinical conditions should be a priority of those who work with female athletes to ensure that they maximize the benefits of regular exercise. [20]

Patients are recommended to work with a dietician who can monitor their nutritional status and help the patient work towards a healthy goal weight. [5] Patients should also meet with a psychiatrist or psychologist to address the psychological aspects of the triad. Therefore, it is important that trainers and coaches are made aware of the athlete's condition and be part of her recovery. [5]

Medicine

Patients are also sometimes treated pharmacologically. To both induce menses and improve bone density, doctors may prescribe cyclic estrogen or progesterone as is used to treat post-menopausal women. [5] Patients may also be put on oral contraceptives to stimulate regular periods. [5] In addition to hormone therapy, nutrition supplements may be recommended. [5] Doctors may prescribe calcium supplements. Vitamin D supplements may be also used because this vitamin aids in calcium absorption. [5] Bisphosphonates and calcitonin, used to treat adults with osteoporosis, may be prescribed, although their effectiveness in adolescents has not yet been established. [5] Finally, if indicated by a psychiatric examination, the affected athlete may be prescribed anti-depressants and in some cases benzodiazepines to help in alleviating severe distress at mealtimes. [5]

Psychological treatment

Although relative energy deficiency in sport is often regarded as a physiological issue, it can have psychological impacts in the process of treatment and psychological stress may contribute to the development of RED-S, as athletes may use excessive exercise and decreased energy consumption as a means to manage stress levels. [24] Many athletes strive for perfection and this can exacerbate mental stress as well as put athletes at a greater risk for developing an eating disorder. [21] The main reasons why athletes would be resistant to treatment for RED-S is due to psychological factors. A mental health counselor who is experienced in eating disorders should provide treatment. If there are other comorbid psychological disorders, such as depression and anxiety, a risk of self harm, medical complications and lack of progress in an outpatient level of care, the person struggling with RED-S may need more intensive care at an inpatient, residential, partial hospitalization or intensive outpatient level. At each level of care, treatment modalities include cognitive-behavioral therapy, dialectical behavioral therapy or family-based therapy. [1]

Prognosis

Sustained low energy availability, with or without disordered eating, can impair health. Psychological problems associated with eating disorders include low self-esteem, depression, and anxiety disorders. Medical complications involve the cardiovascular, endocrine, reproductive, skeletal, gastrointestinal, renal, and central nervous systems. The prognosis for anorexia nervosa is grave with a six-fold increase in standard mortality rates compared to the general population. In one study, 5.4% of athletes with eating disorders reported suicide attempts. Although 83% of anorexia nervosa patients partially recover, the rate of sustained recovery of weight, menstrual function and eating behavior is only 33%. [20]

Amenorrheic women can be infertile, due to the absence of ovarian follicular development, ovulation, and luteal function. Consequences of hypoestrogenism seen in amenorrheic athletes include impaired endothelium-dependent arterial vasodilation, which reduces the perfusion of working muscle, impaired skeletal muscle oxidative metabolism, elevated low-density lipoprotein cholesterol levels, and vaginal dryness. [20]

Due to low bone mineral density that declines as the number of missed menstrual cycles accumulates, and the loss of BMD may not be fully reversible. Stress fractures occur more commonly in physically active women with menstrual irregularities and/or low BMD with a relative risk for stress fracture two to four times greater in amenorrheic than eumenorrheic athletes. Fractures also occur in the setting of nutritional deficits and low BMD. [20]

Society and culture

The American Academy of Pediatrics and the AAFP contend that exercise is important and should be promoted in girls for health and enjoyment; however, pediatricians should be wary of health problems that may occur in female athletes. [23] The health related issues concerning this topic are grave and can lead to numerous health issues as previously demonstrated. The treatment plan will depend on the severity of the disorder, however some form of treatment has been shown as helpful to produce successful progress towards a better health condition. Clearly, many health problems arise due to disordered eating.

Coaches are discouraged from active participation in the treatment of eating disorders. In addition to conflicts of interest, coaches may be perceived to pressure athletes and potentially perpetuate components of RED-S. For example, in maintaining a place on the team or continued scholarship support, a female athlete may feel compelled to overtrain or restrict eating. [23]

Male athletes

Relative energy deficiency in sport is also common among male athletes, especially those in sports that encourage a certain weight. Risk of RED-S is heightened in "road cyclists, rowers (lightweight and open weight), athletes in combat sports, distance runners, and jockeys." [25]

See also

Related Research Articles

<span class="mw-page-title-main">Osteoporosis</span> Skeletal disorder

Osteoporosis is a systemic skeletal disorder characterized by low bone mass, micro-architectural deterioration of bone tissue leading to bone sterility, and consequent increase in fracture risk. It is the most common reason for a broken bone among the elderly. Bones that commonly break include the vertebrae in the spine, the bones of the forearm, the wrist, and the hip. Until a broken bone occurs there are typically no symptoms. Bones may weaken to such a degree that a break may occur with minor stress or spontaneously. After the broken bone heals, the person may have chronic pain and a decreased ability to carry out normal activities.

<span class="mw-page-title-main">Estrogen</span> Primary female sex hormones

Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal activity: estrone (E1), estradiol (E2), and estriol (E3). Estradiol, an estrane, is the most potent and prevalent. Another estrogen called estetrol (E4) is produced only during pregnancy.

<span class="mw-page-title-main">Estradiol</span> Chemical compound

Estradiol (E2), also spelled oestradiol, is an estrogen steroid hormone and the major female sex hormone. It is involved in the regulation of the estrous and menstrual female reproductive cycles. Estradiol is responsible for the development of female secondary sexual characteristics such as the breasts, widening of the hips and a female-associated pattern of fat distribution. It is also important in the development and maintenance of female reproductive tissues such as the mammary glands, uterus and vagina during puberty, adulthood and pregnancy. It also has important effects in many other tissues including bone, fat, skin, liver, and the brain.

Amenorrhea is the absence of a menstrual period in a female who has reached reproductive age. Physiological states of amenorrhoea are seen, most commonly, during pregnancy and lactation (breastfeeding). Outside the reproductive years, there is absence of menses during childhood and after menopause.

Anovulation is when the ovaries do not release an oocyte during a menstrual cycle. Therefore, ovulation does not take place. However, a woman who does not ovulate at each menstrual cycle is not necessarily going through menopause. Chronic anovulation is a common cause of infertility.

Oligomenorrhea is infrequent menstrual periods. Generally the menstrual periods occur at intervals of greater than 35 days, with less than 9 periods in a year, where previously there had been a regularly established pattern. The period may be light or short in duration, and irregular.

An anovulatory cycle is a menstrual cycle characterised by the absence of ovulation and a luteal phase. It may also vary in duration from a regular menstrual cycle.

<span class="mw-page-title-main">Osteopenia</span> Medical condition

Osteopenia, known as "low bone mass" or "low bone density", is a condition in which bone mineral density is low. Because their bones are weaker, people with osteopenia may have a higher risk of fractures, and some people may go on to develop osteoporosis. In 2010, 43 million older adults in the US had osteopenia. Unlike osteoporosis, osteopenia does not usually cause symptoms, and losing bone density in itself does not cause pain.

<span class="mw-page-title-main">Underweight</span> Below a weight considered healthy

An underweight person is a person whose body weight is considered too low to be healthy. A person who is underweight is malnourished.

Hypoestrogenism, or estrogen deficiency, refers to a lower than normal level of estrogen. It is an umbrella term used to describe estrogen deficiency in various conditions. Estrogen deficiency is also associated with an increased risk of cardiovascular disease, and has been linked to diseases like urinary tract infections and osteoporosis.

<span class="mw-page-title-main">Menstrual disorder</span> Medical condition affecting menstrual cycle

A menstrual disorder is characterized as any abnormal condition with regards to a woman's menstrual cycle. There are many different types of menstrual disorders that vary with signs and symptoms, including pain during menstruation, heavy bleeding, or absence of menstruation. Normal variations can occur in menstrual patterns but generally menstrual disorders can also include periods that come sooner than 21 days apart, more than 3 months apart, or last more than 10 days in duration. Variations of the menstrual cycle are mainly caused by the immaturity of the hypothalamic-pituitary-ovarian (HPO) axis, and early detection and management is required in order to minimize the possibility of complications regarding future reproductive ability.

Senile osteoporosis has been recently recognized as a geriatric syndrome with a particular pathophysiology. There are different classification of osteoporosis: primary, in which bone loss is a result of aging and secondary, in which bone loss occurs from various clinical and lifestyle factors. Primary, or involuntary osteoporosis, can further be classified into Type I or Type II. Type I refers to postmenopausal osteoporosis and is caused by the deficiency of estrogen. While senile osteoporosis is categorized as an involuntary, Type II, and primary osteoporosis, which affects both men and women over the age of 70 years. It is accompanied by vitamin D deficiency, body's failure to absorb calcium, and increased parathyroid hormone.

Functional hypothalamic amenorrhea (FHA) is a form of amenorrhea and chronic anovulation and is one of the most common types of secondary amenorrhea. It is classified as hypogonadotropic hypogonadism. It was previously known as "juvenile hypothalamosis syndrome," prior to the discovery that sexually mature females are equally affected. FHA has multiple risk factors, with links to stress-related, weight-related, and exercise-related factors. FHA is caused by stress-induced suppression of the hypothalamic-pituitary-ovarian (HPO) axis, which results in inhibition of gonadotropin-releasing hormone (GnRH) secretion, and gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Severe and potentially prolonged hypoestrogenism is perhaps the most dangerous hormonal pathology associated with the disease, because consequences of this disturbance can influence bone health, cardiovascular health, mental health, and metabolic functioning in both the short and long-term. Because many of the symptoms overlap with those of organic hypothalamic, pituitary, or gonadal disease and therefore must be ruled out, FHA is a diagnosis of exclusion; "functional" is used to indicate a behavioral cause, in which no anatomical or organic disease is identified, and is reversible with correction of the underlying cause. Diagnostic workup includes a detailed history and physical, laboratory studies, such as a pregnancy test, and serum levels of FSH and LH, prolactin, and thyroid-stimulating hormone (TSH), and imaging. Additional tests may be indicated in order to distinguish FHA from organic hypothalamic or pituitary disorders. Patients present with a broad range of symptoms related to severe hypoestrogenism as well as hypercortisolemia, low serum insulin levels, low serum insulin-like growth factor 1 (IGF-1), and low total triiodothyronine (T3). Treatment is primarily managing the primary cause of the FHA with behavioral modifications. While hormonal-based therapies are potential treatment to restore menses, weight gain and behavioral modifications can have an even more potent impact on reversing neuroendocrine abnormalities, preventing further bone loss, and re-establishing menses, making this the recommended line of treatment. If this fails to work, secondary treatment is aimed at treating the effects of hypoestrogenism, hypercortisolism, and hypothyroidism.

Hypomenorrhea or hypomenorrhoea, also known as short or scanty periods, is extremely light menstrual blood flow. It is the opposite of heavy periods or hypermenorrhea which is more properly called menorrhagia.

<span class="mw-page-title-main">Aromatase deficiency</span> Medical condition

Aromatase deficiency is a rare condition characterized by extremely low levels or complete absence of the enzyme aromatase activity in the body. It is an autosomal recessive disease resulting from various mutations of gene CYP19 (P450arom) which can lead to ambiguous genitalia and delayed puberty in females, continued linear growth into adulthood and osteoporosis in males and virilization in pregnant mothers. As of 2020, fewer than 15 cases have been identified in genetically male individuals and at least 30 cases in genetically female individuals.

An endocrine bone disease is a bone disease associated with a disorder of the endocrine system. An example is osteitis fibrosa cystica.

<span class="mw-page-title-main">Catamenial epilepsy</span> Epilepsy exacerbated during certain phases of the menstrual cycle

Catamenial epilepsy is a form of epilepsy in women where seizures are exacerbated during certain phases of the menstrual cycle. In rare cases, seizures occur only during certain parts of the cycle; in most cases, seizures occur more frequently during certain parts of the cycle. Catamenial epilepsy is underlain by hormonal fluctuations of the menstrual cycle where estrogens promote seizures and progesterone counteracts seizure activity.

<span class="mw-page-title-main">High-dose estrogen therapy</span> Type of hormone therapy

High-dose estrogen therapy (HDE) is a type of hormone therapy in which high doses of estrogens are given. When given in combination with a high dose of progestogen, it has been referred to as pseudopregnancy. It is called this because the estrogen and progestogen levels achieved are in the range of the very high levels of these hormones that occur during pregnancy. HDE and pseudopregnancy have been used in medicine for a number of hormone-dependent indications, such as breast cancer, prostate cancer, and endometriosis, among others. Both natural or bioidentical estrogens and synthetic estrogens have been used and both oral and parenteral routes may be used.

Exercise amenorrhoea is a medical condition in which women involved in heavy exercise experience absence of menstruation of varying periods of time. It occurs because of neuroendocrine dysfunction and is usually reversible. Exercise amenorrhoea is a component of female athlete triad.

Menstrual suppression refers to the practice of using hormonal management to stop or reduce menstrual bleeding. In contrast to surgical options for this purpose, such as hysterectomy or endometrial ablation, hormonal methods to manipulate menstruation are reversible.

References

  1. 1 2 3 4 Mountjoy, Margo; Sundgot-Borgen, Jorunn; Burke, Louise; Carter, Susan; Constantini, Naama; Lebrun, Constance; Meyer, Nanna; Sherman, Roberta; Steffen, Kathrin; Budgett, Richard; Ljungqvist, Arne (April 2014). "The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S)". British Journal of Sports Medicine. 48 (7): 491–497. doi: 10.1136/bjsports-2014-093502 . PMID   24620037. S2CID   206880457. ProQuest   1779358024.
  2. "The athletes starving themselves for success". BBC News. 9 December 2018.
  3. Hoch AZ, Pajewski NM, Moraski L, et al. (September 2009). "Prevalence of the female athlete triad in high school athletes and sedentary students". Clin J Sport Med. 19 (5): 421–8. doi:10.1097/JSM.0b013e3181b8c136. PMC   2848387 . PMID   19741317.
  4. 1 2 3 4 5 6 7 De Souza, Mary Jane; Nattiv, Aurelia; Joy, Elizabeth; Misra, Madhusmita; Williams, Nancy I; Mallinson, Rebecca J; Gibbs, Jenna C; Olmsted, Marion; Goolsby, Marci; Matheson, Gordon (February 2014). "2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013". British Journal of Sports Medicine. 48 (4): 289. doi: 10.1136/bjsports-2013-093218 . PMID   24463911.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Hobart, J. A.; Smucker, D. R. (June 2000). "The female athlete triad". American Family Physician. 61 (11): 3357–3364, 3367. PMID   10865930. ProQuest   234284479.
  6. Torstveit, Monica Klungland; Sundgot-Borgen, Jorunn (February 2005). "The female athlete triad: are elite athletes at increased risk?". Medicine and Science in Sports and Exercise. 37 (2): 184–193. doi: 10.1249/01.mss.0000152677.60545.3a . PMID   15692312.
  7. 1 2 "What is the Triad?". Female Athlete Triad Coalition. Retrieved 14 March 2012.
  8. Thein-Nissenbaum, Jill; Hammer, Erin (4 April 2017). "Treatment strategies for the female athlete triad in the adolescent athlete: current perspectives". Open Access Journal of Sports Medicine. 8: 85–95. doi: 10.2147/OAJSM.S100026 . PMC   5388220 . PMID   28435337.
  9. Female Athlete Triad at eMedicine
  10. De Souza, Mary Jand. "The Female Athlete Triad". Powerbar. Archived from the original on 24 March 2012. Retrieved 14 March 2012.
  11. 1 2 3 4 5 "Female Athlete Triad". KidsHealth. Retrieved 11 April 2012.
  12. Eguiguren, Maria L.; Ackerman, Kathryn E. (2016). "The Female Athlete Triad". The Young Female Athlete. Contemporary Pediatric and Adolescent Sports Medicine. pp. 57–71. doi:10.1007/978-3-319-21632-4_5. ISBN   978-3-319-21631-7.
  13. 1 2 Mountjoy, Margo; Sundgot-Borgen, Jorunn Kaiander; Burke, Louise M; Ackerman, Kathryn E; Blauwet, Cheri; Constantini, Naama; Lebrun, Constance; Lundy, Bronwen; Melin, Anna Katarina; Meyer, Nanna L; Sherman, Roberta T; Tenforde, Adam S; Klungland Torstveit, Monica; Budgett, Richard (June 2018). "IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update". British Journal of Sports Medicine. 52 (11): 687–697. doi: 10.1136/bjsports-2018-099193 . PMID   29773536.
  14. Online Medical Dictionary. 1997. Center for Cancer Education. <http://cancerweb.ncl.ac.uk/cgi-bin/omd?action=Search+OMD&query=gonadotropins> Retrieved on 2007-10-24.
  15. Menstruation and the Menstrual Cycle. The National Women’s Health Information Center. 2007. < http://www.4women.gov/FAQ/menstru.htm> Retrieved on 2007-10-19.
  16. Allaway, HC; Southmayd, EA; De Souza, MJ (Feb 2016). "The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa". Horm Mol Biol Clin Investig. 25 (2): 91–119. doi:10.1515/hmbci-2015-0053. PMID   26953710. S2CID   635270.
  17. Osteoporosis. 2006. National Institutes of Health. <http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/default.asp> Retrieved on 2007-10-24.
  18. Ott, Susan. 2007. Estrogen: Mechanism of Bone Action. Department of Medicine University of Washington. < http://courses.washington.edu/bonephys/esteffects.html> Retrieved on 2007-10-24.
  19. Seifert-Klauss, V.; Prior, J. C. (2010). "Progesterone and Bone: Actions Promoting Bone Health in Women". Journal of Osteoporosis. 2010: 1–18. doi: 10.4061/2010/845180 . PMC   2968416 . PMID   21052538.
  20. 1 2 3 4 5 6 7 8 9 American College of Sports Medicine (2007). "The Female Athlete Triad". Medicine & Science in Sports & Exercise. 39 (10): 1867–1882. doi: 10.1249/mss.0b013e318149f111 . PMID   17909417.
  21. 1 2 3 4 Dave, Sona C.; Fisher, Martin (August 2022). "Relative energy deficiency in sport (RED – S)". Current Problems in Pediatric and Adolescent Health Care. 52 (8): 101242. doi:10.1016/j.cppeds.2022.101242. PMID   35915044. S2CID   251204780.
  22. Kuikman, Megan A.; Mountjoy, Margo; Stellingwerff, Trent; Burr, Jamie F. (May 2021). "A Review of Nonpharmacological Strategies in the Treatment of Relative Energy Deficiency in Sport". International Journal of Sport Nutrition and Exercise Metabolism. 31 (3): 268–275. doi:10.1123/ijsnem.2020-0211. PMID   33465762. S2CID   231650429.
  23. Langbein, Rachel K.; Martin, Daniel; Allen-Collinson, Jacquelyn; Jackman, Patricia C. (February 2022). "'It's hard to find balance when you're broken': Exploring female endurance athletes' psychological experience of recovery from relative energy deficiency in sport (RED-S)" (PDF). Performance Enhancement & Health. 10 (1): 100214. doi:10.1016/j.peh.2021.100214. S2CID   245150041.
  24. Burke, Louise M.; Close, Graeme L.; Lundy, Bronwen; Mooses, Martin; Morton, James P.; Tenforde, Adam S. (July 2018). "Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes". International Journal of Sport Nutrition and Exercise Metabolism. 28 (4): 364–374. doi:10.1123/ijsnem.2018-0182. PMID   30040508. S2CID   51714322.

Further reading