This article needs additional citations for verification .(June 2024) |
Ophthalmoscopy | |
---|---|
MeSH | D009887 |
Ophthalmoscopy, also called funduscopy, is a test that allows a health professional to see inside the fundus of the eye and other structures using an ophthalmoscope (or funduscope). It is done as part of an eye examination and may be done as part of a routine physical examination. It is crucial in determining the health of the retina, optic disc, and vitreous humor.[ citation needed ]
The pupil is a hole through which the eye's interior can be viewed. For better viewing, the pupil can be opened wider (dilated; mydriasis) before ophthalmoscopy using medicated eye drops (dilated fundus examination). However, undilated examination is more convenient (albeit not as comprehensive), and is the most common type in primary care.
An alternative or complement to ophthalmoscopy is to perform a fundus photography, where the image can be analysed later by a professional.
There are two major types of ophthalmoscopy:
Features | Direct ophthalmoscopy | Indirect ophthalmoscopy |
---|---|---|
Condensing lens | Not required | Required |
Examination distance | As close to patient's eye as possible | At an arm's length |
Image | Virtual, erect | Real, inverted |
Illumination | Not as bright; not useful in hazy media | Bright; useful for hazy media |
Area of field in focus | About 2–8 disc diameters | About 8 disc diameters |
Stereopsis | Absent | Present |
Accessible fundus view | Slightly beyond equator[ further explanation needed ] | Up to ora serrata, i.e. peripheral retina |
Examination through hazy media | Difficult to impossible | Possible |
Each type of ophthalmoscopy has a special type of ophthalmoscope:
Ophthalmoscopy is done as part of a routine physical or complete eye examination, mainly by optometrists and ophthalmologists. It is used to detect and evaluate symptoms of various retinal vascular diseases and eye diseases.
In patients with headaches, the finding of swollen optic discs (papilledema) on ophthalmoscopy is a key sign indicating raised intracranial pressure, which may be due to conditions such as hydrocephalus, benign intracranial hypertension (pseudotumor cerebri), and brain tumors. In glaucoma, cupped optic discs are seen. In patients with diabetes mellitus, regular ophthalmoscopic eye examinations (once every 6 months to 1 year) are important to screen for diabetic retinopathy, as visual loss due to diabetes can be prevented by retinal laser treatment if retinopathy is spotted early. In arterial hypertension, hypertensive changes of the retina closely mimic those in the brain and may predict cerebrovascular accidents (strokes).[ citation needed ]
During ophthalmoscopy, the pupil constricts due to light from the ophthalmoscope. To allow for better inspection of the posterior eye through the pupil, it is often desirable to dilate (enlarge) the pupil by applying a mydriatic agent (e.g. tropicamide), or by reducing the ophthalmoscope's brightness, which may slightly increase natural mydriasis.[ citation needed ]
Mydriatic agents are primarily considered ophthalmologist or optometrist equipment, but is used by other specialists as well, including neurologists and internists. Recent developments like scanning laser ophthalmoscopy can make good quality images through pupils as small as 2 mm (0.079 in), so dilating the pupil is not necessary with these methods.[ citation needed ]
The first instrument for looking into the eye was first invented in 1847 by British inventor Charles Babbage. However, he was unable to obtain an image with the instrument when showing it to ophthalmologist Thomas Wharton Jones, and thus became discouraged to proceed further. The instrument is described by Jones as follows: [2]
It consisted of a bit of plain mirror, with the silvering scraped off at two or three small spots in the middle, fixed within a tube at such an angle that the rays of light falling on it through an opening in the side of the tube, were reflected into the eye to be observed, and to which the one end of the tube was directed. The observer looked through the clear spots of the mirror from the other end. [2]
— Thomas Wharton Jones, "Report on the Ophthalmoscope", Chronicle of Medical Science (October 1854)
Later in 1851, German physiologist Hermann von Helmholtz invented the ophthalmoscope again independently. At that time, Helmholtz was a young physiology professor and wanted to demonstrate to his students why the pupil was sometimes black and sometimes light. He wrote about his ophthalmoscope in detail and demonstrated that it required three essential components (which remain true today): [2]
Helmholtz called his instrument an Augenspiegel ('eye mirror'). The name "ophthalmoscope" only came into common use in 1854, three years after the instrument's invention. [2]
Helmholtz's first ophthalmoscope could not correct for refractive errors in the patient and/or the observer. This limitation was solved in 1852 by Helmholtz' machinist, Egbert Rekoss, who added two rotatable discs that each contained a few lenses. These wheels of lenses were superior to other early opthalmoscopes which used separate individual lenses that were inconvenient to change. The discs are known as the "Rekoss Disc" and continue to be used on most hand-held ophthalmoscopes today. [3]
Observing the eye's interior required alignment of the observer's vision and the light source. This was discovered by William Cumming, a young ophthalmologist at the Royal London Ophthalmic Hospital, who wrote that "every eye could be made luminous if the axis from a source of illumination directed towards a person's eye and the line of vision of the observer were coincident". To eliminate this variable, some (including Lionel Beale) created ophthalmoscopes with an attached light source. [2]
While training in France, Greek ophthalmologist Andreas Anagnostakis came up with the idea of making the instrument hand-held by adding a concave mirror. Austin Barnett created a model for Anagnostakis, which he used in his practice and subsequently presented at the first Ophthalmological Conference in Brussels in 1857, which made the instrument very popular among ophthalmologists.[ citation needed ]
The invention of the incandescent light bulb further enabled the ophthalmoscope to be self-luminous instead of relying on an external and remote source of illumination. [4] The first ophthalmoscope to have an installed light bulb was created by William Dennet, who presented his invention to the American Ophthalmological Society in 1885, though it was unreliable as the light bulb's life was short and unpredictable. [2]
The ophthalmoscope was further improved in 1915 by G.S. Crampton, who added a battery to the handle for powering the light source, thus making the instrument portable. [4]
In 1915, Francis A. Welch and William Noah Allyn invented the world's first hand-held direct-illuminating ophthalmoscope. The company Welch Allyn started as a result of this invention. [5] In the 2000s, the company developed a new design of ophthalmoscope called the "Panoptic". The instrument produced an image with a field-of-view five times larger than conventional direct ophthalmoscopes. [4] [6]
The word ophthalmoscopy ( /ˌɒfθælˈmɒskəpi/ ) uses combining forms of ophthalmo- + -scopy , yielding "viewing the eye". The word funduscopy ( /fʌnˈdʌskəpi/ ) derives from fundus + -scopy , yielding "viewing the far inside". The idea that fundus can and should correspond to a combining form fundo- drives the formation of an alternate form, fundoscopy (fundo- + -scopy), which is the subject of a descriptive-versus-prescriptive difference in acceptance. Some dictionaries enter the fundo- form as a second-listed variant, [7] [8] but others do not enter it at all, [9] [10] and one prescribes its avoidance with a usage note. [11]
The red-eye effect in photography is the common appearance of red pupils in color photographs of the eyes of humans and several other animals. It occurs when using a photographic flash that is very close to the camera lens in ambient low light.
Ophthalmology is a clinical and surgical specialty within medicine that deals with the diagnosis and treatment of eye disorders. A former term is oculism.
In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual information from the retina to the brain. In humans, the optic nerve is derived from optic stalks during the seventh week of development and is composed of retinal ganglion cell axons and glial cells; it extends from the optic disc to the optic chiasma and continues as the optic tract to the lateral geniculate nucleus, pretectal nuclei, and superior colliculus.
Cycloplegia is paralysis of the ciliary muscle of the eye, resulting in a loss of accommodation. Because of the paralysis of the ciliary muscle, the curvature of the lens can no longer be adjusted to focus on nearby objects. This results in similar problems as those caused by presbyopia, in which the lens has lost elasticity and can also no longer focus on close-by objects. Cycloplegia with accompanying mydriasis is usually due to topical application of muscarinic antagonists such as atropine and cyclopentolate.
Scanning laser ophthalmoscopy (SLO) is a method of examination of the eye. It uses the technique of confocal laser scanning microscopy for diagnostic imaging of the retina or cornea of the human eye.
The optic disc or optic nerve head is the point of exit for ganglion cell axons leaving the eye. Because there are no rods or cones overlying the optic disc, it corresponds to a small blind spot in each eye.
An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.
In ophthalmology and optometry, a slit lamp is an instrument consisting of a high-intensity light source that can be focused to shine a thin sheet of light into the eye. It is used in conjunction with a biomicroscope. The lamp facilitates an examination of the anterior segment and posterior segment of the human eye, which includes the eyelid, sclera, conjunctiva, iris, natural crystalline lens, and cornea. The binocular slit-lamp examination provides a stereoscopic magnified view of the eye structures in detail, enabling anatomical diagnoses to be made for a variety of eye conditions. A second, hand-held lens is used to examine the retina.
Retinoscopy (Ret) is a technique to obtain an objective measurement of the refractive error of a patient's eyes. The examiner uses a retinoscope to shine light into the patient's eye and observes the reflection (reflex) off the patient's retina. While moving the streak or spot of light through the pupil across the retina, the examiner observes the relative movement of the reflex or manually places lenses over the eye to "neutralize" the reflex.
The posterior segment or posterior cavity is the back two-thirds of the eye that includes the anterior hyaloid membrane and all of the optical structures behind it: the vitreous humor, retina, choroid, and optic nerve. The portion of the posterior segment visible during ophthalmoscopy is sometimes referred to as the posterior pole, or fundus. Some ophthalmologists specialize in the treatment and management of posterior segment disorders and diseases.
The fundus of the eye is the interior surface of the eye opposite the lens and includes the retina, optic disc, macula, fovea, and posterior pole. The fundus can be examined by ophthalmoscopy and/or fundus photography.
Dilated fundus examination (DFE) is a diagnostic procedure that uses mydriatic eye drops to dilate or enlarge the pupil in order to obtain a better view of the fundus of the eye. Once the pupil is dilated, examiners use ophthalmoscopy to view the eye's interior, which makes it easier to assess the retina, optic nerve head, blood vessels, and other important features. DFE has been found to be a more effective method for evaluating eye health when compared to non-dilated examination, and is the best method of evaluating structures behind the iris. It is frequently performed by ophthalmologists and optometrists as part of an eye examination.
The red reflex refers to the reddish-orange reflection of light from the back of the eye, or fundus, observed when using an ophthalmoscope or retinoscope. It is important to note that the red reflex may be absent or poorly visible in people with dark eyes, and may even appear yellow in Asians or green/blue in Africans.
Andreas Anagnostakis was a Greek ophthalmologist, physician, and educator. He is best known for inventing the ophthalmoscope, a handheld tool used in diagnostics and still relevant today. He is credited as the first ophthalmologist in Greece.
Fundus photography involves photographing the rear of an eye, also known as the fundus. Specialized fundus cameras consisting of an intricate microscope attached to a flash enabled camera are used in fundus photography. The main structures that can be visualized on a fundus photo are the central and peripheral retina, optic disc and macula. Fundus photography can be performed with colored filters, or with specialized dyes including fluorescein and indocyanine green.
Mammals normally have a pair of eyes. Although mammalian vision is not so excellent as bird vision, it is at least dichromatic for most of mammalian species, with certain families possessing a trichromatic color perception.
The eye is made up of the sclera, the iris, and the pupil, a black hole located at the center of the eye with the main function of allowing light to pass to the retina. Due to certain muscle spasms in the eye, the pupil can resemble a tadpole, which consists of a circular body, no arms or legs, and a tail.
The eagle eye is among the sharpest in the animal kingdom, with an eyesight estimated at 4 to 8 times stronger than that of the average human. Although an eagle may only weigh 10 pounds (4.5 kg), its eyes are roughly the same size as those of a human. Eagle weight varies: a small eagle could weigh 700 grams (1.5 lb), while a larger one could weigh 6.5 kilograms (14 lb); an eagle of about 10 kilograms (22 lb) weight could have eyes as big as that of a human who weighs 200 pounds (91 kg). Although the size of the eagle eye is about the same as that of a human being, the back side shape of the eagle eye is flatter. Their eyes are stated to be larger in size than their brain, by weight. Color vision with resolution and clarity are the most prominent features of eagles' eyes, hence sharp-sighted people are sometimes referred to as "eagle-eyed". Eagles can identify five distinctly colored squirrels and locate their prey even if hidden.
Teleophthalmology is a branch of telemedicine that delivers eye care through digital medical equipment and telecommunications technology. Today, applications of teleophthalmology encompass access to eye specialists for patients in remote areas, ophthalmic disease screening, diagnosis and monitoring; as well as distant learning.
The Heidelberg Retinal Tomography is a diagnostic procedure used in ophthalmology. The Heidelberg Retina Tomograph (HRT) is an ophthalmological confocal point scanning laser ophthalmoscope for examining the cornea and certain areas of the retina using different diagnostic modules. However, the most widely used area of application for HRT is the inspection of the optic nerve head (papilla) for early detection and follow-up of glaucoma. The procedure has established itself as an integral part of routine glaucoma diagnostics alongside the visual field examination (perimetry), the chamber angle examination (gonioscopy) and the measurement of intraocular pressure (tonometry). The HRT is the most widely used application of confocal scanning laser ophthalmoscopy.