Gonioscopy

Last updated
Gonioscopy
Gonio.png
Goldmann Goniolens schematic
Specialty ophthalmology
MeSH D006068

Gonioscopy describes the use of a goniolens (also known as a gonioscope) in conjunction with a slit lamp or operating microscope to gain a view of the iridocorneal angle, or the anatomical angle formed between the eye's cornea and iris. The importance of this process is in diagnosing and monitoring various eye conditions associated with glaucoma.

Slit lamp

A slit lamp is an instrument consisting of a high-intensity light source that can be focused to shine a thin sheet of light into the eye. It is used in conjunction with a biomicroscope. The lamp facilitates an examination of the anterior segment and posterior segment of the human eye, which includes the eyelid, sclera, conjunctiva, iris, natural crystalline lens, and cornea. The binocular slit-lamp examination provides a stereoscopic magnified view of the eye structures in detail, enabling anatomical diagnoses to be made for a variety of eye conditions. A second, hand-held lens is used to examine the retina.

Cornea part of the eye

The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. The cornea, with the anterior chamber and lens, refracts light, with the cornea accounting for approximately two-thirds of the eye's total optical power. In humans, the refractive power of the cornea is approximately 43 dioptres. The cornea can be reshaped by surgical procedures such as LASIK.

Iris (anatomy) part of an eye

In humans and most mammals and birds, the iris is a thin, circular structure in the eye, responsible for controlling the diameter and size of the pupil and thus the amount of light reaching the retina. Eye color is defined by that of the iris. In optical terms, the pupil is the eye's aperture, while the iris is the diaphragm.

Contents

The goniolens or gonioscope

The goniolens allows the clinician - usually an ophthalmologist or optometrist - to view the irideocorneal angle through a mirror or prism, without which the angle is masked by total internal reflection from the ocular tissue.

Total internal reflection physical phenomenon

Total internal reflection (TIR) is the phenomenon whereby the horizontal surface of the water in a fish-tank looks like a perfectly silvered mirror when viewed from below the water level (Fig. 1). Technically, TIR is the total reflection of a wave incident at a sufficiently oblique angle on the interface between two media, of which the second ("external") medium is transparent to such waves but has a higher wave velocity than the first ("internal") medium. TIR occurs not only with electromagnetic waves such as light waves and microwaves, but also with other types of waves, including sound and water waves. In the case of a narrow train of waves, such as a laser beam, we tend to speak of the total internal reflection of a "ray" (Fig. 2).

The mechanism for this process varies with each type of goniolens. Three examples of goniolenses are the:

Sclera

The sclera, also known as the white of the eye, is the opaque, fibrous, protective, outer layer of the human eye containing mainly collagen and some elastic fiber. In humans, the whole sclera is white, contrasting with the coloured iris, but in other mammals the visible part of the sclera matches the colour of the iris, so the white part does not normally show. In the development of the embryo, the sclera is derived from the neural crest. In children, it is thinner and shows some of the underlying pigment, appearing slightly blue. In the elderly, fatty deposits on the sclera can make it appear slightly yellow. Many people with dark skin have naturally darkened sclerae, the result of melanin pigmentation.

Ora serrata Wikimedia disambiguation page

The ora serrata is the serrated junction between the retina and the ciliary body. This junction marks the transition from the simple, non-photosensitive area of the ciliary body to the complex, multi-layered, photosensitive region of the retina. The pigmented layer is continuous over choroid, ciliary body and iris while the nervous layer terminates just before the ciliary body. This point is the ora serrata. In this region the pigmented epithelium of the retina transitions into the outer pigmented epithelium of the ciliary body and the inner portion of the retina transitions into the non-pigmented epithelium of the cilia. In animals in which the region does not have a serrated appearance, it is called the ora ciliaris retinae.

There are many other goniolenses available for use, including modified versions of the aforementioned, which prove valuable for surgical use (goniotomy).

The gonioscopy process

Although the details vary based on the type of goniolens used, in general the gonioscopy process involves:

Interpreting the gonioscopic image

The typical view through most goniolenses is illustrated by these idealistic schematic diagrams. In reality the clinical picture can vary both within and between individual patients. This view of the iridocorneal angle provides information in several ways:

Sample View of Wide Angle Gonioview.png
Sample View of Wide Angle
Sample View of Narrow Angle Gonioview2.png
Sample View of Narrow Angle
Sample View of Anterior Synechiae Goniosyn.png
Sample View of Anterior Synechiae
Sample View of Anterior Synechiae with Indentation Gonioscopy Gonioind.png
Sample View of Anterior Synechiae with Indentation Gonioscopy
Aqueous humour transparent, watery, fluid similar to plasma, but containing low protein concentrations, secreted from the ciliary epithelium

The aqueous humour is a transparent, watery fluid similar to plasma, but containing low protein concentrations. It is secreted from the ciliary epithelium, a structure supporting the lens. It fills both the anterior and the posterior chambers of the eye, and is not to be confused with the vitreous humour, which is located in the space between the lens and the retina, also known as the posterior cavity or vitreous chamber.

Trabecular meshwork

The trabecular meshwork is an area of tissue in the eye located around the base of the cornea, near the ciliary body, and is responsible for draining the aqueous humor from the eye via the anterior chamber.

Glaucoma eye disease that is characterized by an unstable or a sustained increase in the intraocular pressure which the eye cannot withstand without damage to its structure or impairment of its function

Glaucoma is a group of eye diseases which result in damage to the optic nerve and vision loss. The most common type is open-angle glaucoma with less common types including closed-angle glaucoma and normal-tension glaucoma. Open-angle glaucoma develops slowly over time and there is no pain. Peripheral vision may begin to decrease followed by central vision resulting in blindness if not treated. Closed-angle glaucoma can present gradually or suddenly. The sudden presentation may involve severe eye pain, blurred vision, mid-dilated pupil, redness of the eye, and nausea. Vision loss from glaucoma, once it has occurred, is permanent.

Additional images

Related Research Articles

Synechia (eye) Human disease

A synechia is an eye condition where the iris adheres to either the cornea or lens. Synechiae can be caused by ocular trauma, iritis or iridocyclitis and may lead to certain types of glaucoma. It is sometimes visible on careful examination but usually more easily through an ophthalmoscope or slit-lamp.

Eye examination a series of tests assessing vision and pertaining to the eyes

An eye examination is a series of tests performed by an ophthalmologist, optometrist, or orthoptist, optician (UK), assessing vision and ability to focus on and discern objects, as well as other tests and examinations pertaining to the eyes. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.

Red eye (medicine) type of eye disease

A red eye is an eye that appears red due to illness or injury. It is usually injection and prominence of the superficial blood vessels of the conjunctiva, which may be caused by disorders of these or adjacent structures. Conjunctivitis and subconjunctival hemorrhage are two of the less serious but more common causes.

Ocular tonometry procedure to determine intra ocular pressure

Tonometry is the procedure eye care professionals perform to determine the intraocular pressure (IOP), the fluid pressure inside the eye. It is an important test in the evaluation of patients at risk from glaucoma. Most tonometers are calibrated to measure pressure in millimeters of mercury (mmHg).

Anterior chamber of eyeball

The anterior chamber (AC) is the aqueous humor-filled space inside the eye between the iris and the cornea's innermost surface, the endothelium. Hyphema, anterior uveitis and glaucoma are three main pathologies in this area. In hyphema, blood fills the anterior chamber as a result of a hemorrhage, most commonly after a blunt eye injury. Anterior uveitis is an inflammatory process affecting the iris and ciliary body, with resulting inflammatory signs in the anterior chamber. In glaucoma, blockage of the trabecular meshwork prevents the normal outflow of aqueous humour, resulting in increased intraocular pressure, progressive damage to the optic nerve head, and eventually blindness.

Schwalbes line

Schwalbe's line is the anatomical line found on the interior surface of the eye's cornea, and delineates the outer limit of the corneal endothelium layer. Specifically, it represents the termination of Descemet's membrane. In many cases it can be seen via gonioscopy.

Iridocorneal Endothelial (ICE) syndromes are a spectrum of diseases characteriezed by slowly progressive abnormalities of the corneal endothelium and features including corneal edema, iris distortion, and secondary angle-closure glaucoma. [1,2,4] ICE syndromes are predominantly unilateral and nonhereditary [1,2,4]. The condition occurs in predominantly middle-aged women [1,3,4].

Glaucoma is a group of diseases affecting the optic nerve that results in vision loss and is frequently characterized by raised intraocular pressure (IOP). There are many glaucoma surgeries, and variations or combinations of those surgeries, that facilitate the escape of excess aqueous humor from the eye to lower intraocular pressure, and a few that lower IOP by decreasing the production of aqueous.

Scleral spur

The scleral spur is an annular structure composed of collagen in the human eye, a protrusion of the sclera into the anterior chamber. It is the origin of the longitudinal and circular fibres of the ciliary muscle and is attached anteriorly to the trabecular meshwork.

Pseudoexfoliation syndrome, often abbreviated as PEX and sometimes as PES or PXS, is an aging-related systemic disease manifesting itself primarily in the eyes which is characterized by the accumulation of microscopic granular amyloid-like protein fibers. Its cause is unknown, although there is speculation that there may be a genetic basis. It is more prevalent in women than men, and in persons past the age of seventy. Its prevalence in different human populations varies; for example, it is prevalent in Scandinavia. The buildup of protein clumps can block normal drainage of the eye fluid called the aqueous humor and can cause, in turn, a buildup of pressure leading to glaucoma and loss of vision. As worldwide populations become older because of shifts in demography, PEX may become a matter of greater concern.

OCT Biomicroscopy

OCT Biomicroscopy is the use of optical coherence tomography (OCT) in place of slit lamp biomicroscopy to examine the transparent axial tissues of the eye. Traditionally, ophthalmic biomicroscopy has been completed with a slit lamp biomicroscope that uses slit beam illumination and an optical microscope to enable stereoscopic, magnified, cross-sectional views of transparent tissues in the eye, with or without the aid of an additional lens. Like slit lamp biomicroscopy, OCT does not penetrate opaque tissues well but enables detailed, cross-sectional views of transparent tissues, often with greater detail than is possible with a slit lamp. Ultrasound biomicroscopy (UBM) is much better at imaging through opaque tissues since it uses high energy sound waves. Because of its limited depth of penetration, UBM's main use within ophthalmology has been to visualize anterior structures such as the angle and ciliary body. Both ultrasound and OCT biomicroscopy produce an objective image of ocular tissues from which measurements can be made. Unlike UBM, OCT biomicroscopy can image tissues with high axial resolution as far posteriorly as the choroid.

Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.

Sampaolesi line is a sign which may be observed during a clinical eye examination. During gonioscopy, if an abundance of brown pigment is seen at or anterior to Schwalbe's line, a Sampaolesi line is said to be present. The presence of a Sampaolesi line can signify pigment dispersion syndrome or pseudoexfoliation syndrome.

The Van Herick technique is an eye examination method used to determine the size of the anterior chamber angle of the eye.

Maximilian Salzmann was an Austrian ophthalmologist.