Rosickýite

Last updated
Rosickyite
Rosickyite.jpg
Sharp yellow crystals of rosickyite on matrix from an unspecified off shore drill hole in the Pacific Ocean near California (Ventura County, California, United States of America).
General
Category Native element mineral
Formula
(repeating unit)
S
IMA symbol Rký [1]
Strunz classification 1.CC.05
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P2/c
Unit cell a = 8.455(3)  Å,
b = 13.052(2) Å
c = 9.267(3) Å;
β = 124.89(3)°; Z = 4
Identification
ColorColorless to pale yellow, green tinge
Crystal habit Equidimensional to thin tabular crystals, efflorescences
Twinning On {101}, with twin lamellae parallel to [010]
Cleavage None
Mohs scale hardness2 - 3
Luster Adamantine
Diaphaneity Transparent to translucent
Specific gravity 2.07
Optical propertiesBiaxial (-)
References [2] [3] [4]

Rosickyite is a rare native element mineral that is a polymorph of sulfur. It crystallizes in the monoclinic crystal system and is a high temperature, high density polymorph. It occurs as soft, colorless to pale yellow crystals and efflorescences. [2] [3]

It was first described in 1930 for an occurrence in Havirna, near Letovice, Moravia, Czech Republic. It was named for Vojtĕch Rosický (1880–1942), of Masaryk University, Brno. [2] [3]

Rosickyite occurs as in Death Valley within an evaporite layer produced by a microbial community. The otherwise unstable polymorph was produced and stabilized within a cyanobacteria dominated layer. [5]

Related Research Articles

<span class="mw-page-title-main">Kernite</span>

Kernite, also known as rasorite, is a hydrated sodium borate hydroxide mineral with formula Na
2
B
4
O
6
(OH)
2
·3H
2
O
. It is a colorless to white mineral crystallizing in the monoclinic crystal system typically occurring as prismatic to acicular crystals or granular masses. It is relatively soft with Mohs hardness of 2.5 to 3 and light with a specific gravity of 1.91. It exhibits perfect cleavage and a brittle fracture.

<span class="mw-page-title-main">Kyanite</span> Aluminosilicate mineral

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.

<span class="mw-page-title-main">Dolomite (mineral)</span> Carbonate mineral - CaMg(CO₃)₂

Dolomite is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally CaMg(CO3)2. The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite. An alternative name sometimes used for the dolomitic rock type is dolostone.

<span class="mw-page-title-main">Halite</span> Mineral form of sodium chloride

Halite, commonly known as rock salt, is a type of salt, the mineral (natural) form of sodium chloride (NaCl). Halite forms isometric crystals. The mineral is typically colorless or white, but may also be light blue, dark blue, purple, pink, red, orange, yellow or gray depending on inclusion of other materials, impurities, and structural or isotopic abnormalities in the crystals. It commonly occurs with other evaporite deposit minerals such as several of the sulfates, halides, and borates. The name halite is derived from the Ancient Greek word for "salt", ἅλς (háls).

<span class="mw-page-title-main">Kieserite</span>

Kieserite, or magnesium sulfate monohydrate, is a hydrous magnesium sulfate mineral with formula (MgSO4·H2O).

<span class="mw-page-title-main">Sylvite</span> Potassium chloride mineral

Sylvite, or sylvine, is potassium chloride (KCl) in natural mineral form. It forms crystals in the isometric system very similar to normal rock salt, halite (NaCl). The two are, in fact, isomorphous. Sylvite is colorless to white with shades of yellow and red due to inclusions. It has a Mohs hardness of 2.5 and a specific gravity of 1.99. It has a refractive index of 1.4903. Sylvite has a salty taste with a distinct bitterness.

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Tridymite</span> Silica mineral, polymorph of quartz

Tridymite is a high-temperature polymorph of silica and usually occurs as minute tabular white or colorless pseudo-hexagonal crystals, or scales, in cavities in felsic volcanic rocks. Its chemical formula is SiO2. Tridymite was first described in 1868 and the type location is in Hidalgo, Mexico. The name is from the Greek tridymos for triplet as tridymite commonly occurs as twinned crystal trillings (compound crystals comprising three twinned crystal components).

<span class="mw-page-title-main">Aphthitalite</span>

Aphthitalite is a potassium sulfate mineral with the chemical formula: (K,Na)3Na(SO4)2.

<span class="mw-page-title-main">Thénardite</span> Anhydrous sodium sulfate mineral

Thénardite is an anhydrous sodium sulfate mineral, Na2SO4 which occurs in arid evaporite environments, specifically lakes and playas. It also occurs in dry caves and old mine workings as an efflorescence and as a crusty sublimate deposit around fumaroles. It occurs in volcanic caves on Mount Etna, Italy. It was first described in 1825 for an occurrence in the Espartinas Saltworks, Ciempozuelos, Madrid, Spain and was named for the French chemist, Louis Jacques Thénard (1777–1826).

<span class="mw-page-title-main">Sellaite</span>

Sellaite is a magnesium fluoride mineral with the formula MgF2. It crystallizes in the tetragonal crystal system, typically as clear to white vitreous prisms. It may be fibrous and occur as radiating aggregates. It has a Mohs hardness of 5 to 6 and a specific gravity of 2.97 to 3.15. Refractive index values are nω = 1.378 and nε = 1.390.

<span class="mw-page-title-main">Boracite</span>

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl. It occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic - pyramidal crystal system. Boracite also shows pseudo-isometric cubical and octahedral forms. These are thought to be the result of transition from an unstable high temperature isometric form on cooling. Penetration twins are not unusual. It occurs as well formed crystals and dispersed grains often embedded within gypsum and anhydrite crystals. It has a Mohs hardness of 7 to 7.5 and a specific gravity of 2.9. Refractive index values are nα = 1.658 - 1.662, nβ = 1.662 - 1.667 and nγ = 1.668 - 1.673. It has a conchoidal fracture and does not show cleavage. It is insoluble in water (not to be confused with borax, which is soluble in water).

<span class="mw-page-title-main">Sanidine</span>

Sanidine is the high temperature form of potassium feldspar with a general formula K(AlSi3O8). Sanidine is found most typically in felsic volcanic rocks such as obsidian, rhyolite and trachyte. Sanidine crystallizes in the monoclinic crystal system. Orthoclase is a monoclinic polymorph stable at lower temperatures. At yet lower temperatures, microcline, a triclinic polymorph of potassium feldspar, is stable.

<span class="mw-page-title-main">Polyhalite</span> Sedimentary mineral

Polyhalite is an evaporite mineral, a hydrated sulfate of potassium, calcium and magnesium with formula: K2Ca2Mg(SO4)4·2H2O. Polyhalite crystallizes in the triclinic system, although crystals are very rare. The normal habit is massive to fibrous. It is typically colorless, white to gray, although it may be brick red due to iron oxide inclusions. It has a Mohs hardness of 3.5 and a specific gravity of 2.8.

<span class="mw-page-title-main">Carnallite</span> Evaporite mineral

Carnallite (also carnalite) is an evaporite mineral, a hydrated potassium magnesium chloride with formula KCl.MgCl2·6(H2O). It is variably colored yellow to white, reddish, and sometimes colorless or blue. It is usually massive to fibrous with rare pseudohexagonal orthorhombic crystals. The mineral is deliquescent (absorbs moisture from the surrounding air) and specimens must be stored in an airtight container.

<span class="mw-page-title-main">Hanksite</span>

Hanksite is a sulfate mineral, distinguished as one of only a handful that contain both carbonate and sulfate ion groups. It has the chemical formula Na22K(SO4)9(CO3)2Cl.

<span class="mw-page-title-main">Zabuyelite</span>

Zabuyelite is the natural mineral form of lithium carbonate, with a formula Li2CO3. It was discovered in 1987 at Lake Zabuye, Tibet, after which it is named. It forms colorless vitreous monoclinic crystals.

<span class="mw-page-title-main">Pinnoite</span>

Pinnoite is a magnesium borate mineral with formula: MgB2O(OH)6 or MgB2O4·3(H2O). It crystallizes in the tetragonal crystal system and occurs as colorless to yellow or light green radial fibrous clusters and rarely as short prismatic crystals.

Macphersonite, Pb4(SO4)(CO3)2 (OH)2, is a carbonate mineral that is trimorphous with leadhillite and susannite. Macphersonite is generally white, colorless, or a pale amber in color and has a white streak. It crystallizes in the orthorhombic system with a space group of Pcab. It is fairly soft mineral that has a high specific gravity.

<span class="mw-page-title-main">Doyleite</span> Hydroxide mineral

Doyleite is a rare aluminum trihydroxide mineral named in honor of its discoverer, the Canadian physician Earl Joseph (Jess) Doyle. It was first definitively described in 1985 and it is approved by the IMA. It was described from Mont Saint-Hilaire, where it is extremely rare.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Handbook of Mineralogy
  3. 1 2 3 Rosickyite on Mindat.org
  4. Rosickyite on Webmineral.com
  5. Susanne Douglas and Heixong Yang, Mineral biosignatures in evaporites: Presence of rosickyite in an endoevaporitic microbial community from Death Valley, California, Geology, Dec. 2002, v 30, pp1075-1078