RuvABC

Last updated

RuvABC is a complex of three proteins that mediate branch migration and resolve the Holliday junction created during homologous recombination in bacteria. As such, RuvABC is critical to bacterial DNA repair.

Contents

RuvA-RuvB complex heteromer, Thermus thermophilus 1ixr.jpg
RuvA-RuvB complex heteromer, Thermus thermophilus

RuvA and RuvB bind to the four strand DNA structure [1] formed in the Holliday junction intermediate, and migrate the strands through each other, using a putative spooling mechanism. The RuvAB complex can carry out DNA helicase activity, which helps unwind the duplex DNA. The binding of the RuvC protein to the RuvAB complex is thought to cleave the DNA strands, thereby resolving the Holliday junction.

Protein complex

The RuvABC is a complex of three proteins that resolve the Holliday junction formed during bacterial homologous recombination. In Escherichia coli bacteria, DNA replication forks stall at least once per cell cycle, so that DNA replication must be restarted if the cell is to survive. [2] Replication restart is a multi-step process in E. coli that requires the sequential action of several proteins. When the progress of the replication fork is impeded the proteins single-stranded binding protein SSB and RecG helicase along with the RuvABC complex are required for rescue. [2] The resolution of Holliday junctions that accumulate following replication on damaged DNA templates in E. coli requires the RuvABC complex. [3]

RuvA

RuvA (Holliday junction branch migration complex subunit RuvA) [4] is a DNA-binding protein that binds Holliday junctions with high affinity. The structure of the complex has been variously elucidated through X-ray crystallography and EM data, and suggest that the complex consists of either one or two RuvA tetramers, with charge lined grooves through which the incoming DNA is channelled. The structure also showed the presence of so-called 'acidic pins' in the centre of the tetramer, which serve to separate the DNA duplexes. Its crystal structure has been solved at 1.9A.

RuvB

RuvB (Holliday junction branch migration complex subunit RuvB) [5] is an ATPase that is only active in the presence of DNA and compared to RuvA, RuvB has a low affinity for DNA. The RuvB proteins are thought to form hexameric rings on the exit points of the newly formed DNA duplexes, and it is proposed that they 'spool' the emerging DNA through the RuvA tetramer.

RuvC

RuvC (Crossover junction endodeoxyribonuclease RuvC) [6] is the resolvase, which cleaves the Holliday junction. RuvC proteins have been shown to form dimers in solution and its structure has been solved at 2.5A. It is thought to bind either on the open, DNA exposed face of a single RuvA tetramer, or to replace one of the two tetramers. Binding is proposed to be mediated by an unstructured loop on RuvC, which becomes structured on binding RuvA. RuvC can be bound to the complex in either orientation, therefore resolving Holliday junctions in either a horizontal or vertical manner.

See also

Related Research Articles

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

<span class="mw-page-title-main">Helicase</span> Class of enzymes to unpack an organisms genes

Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.

<span class="mw-page-title-main">Nuclease</span> Class of enzymes which cleave nucleic acids

In biochemistry, a nuclease is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids. Nucleases variously affect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.

<span class="mw-page-title-main">DnaA</span> Protein

DnaA is a protein that activates initiation of DNA replication in bacteria. Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. It is a replication initiation factor which promotes the unwinding of DNA at oriC. The DnaA proteins found in all bacteria engage with the DnaA boxes to start chromosomal replication. The onset of the initiation phase of DNA replication is determined by the concentration of DnaA. DnaA accumulates during growth and then triggers the initiation of replication. Replication begins with active DnaA binding to 9-mer (9-bp) repeats upstream of oriC. Binding of DnaA leads to strand separation at the 13-mer repeats. This binding causes the DNA to loop in preparation for melting open by the helicase DnaB.

<span class="mw-page-title-main">RecBCD</span> Family of protein complexes in bacteria

Exodeoxyribonuclease V is an enzyme of E. coli that initiates recombinational repair from potentially lethal double strand breaks in DNA which may result from ionizing radiation, replication errors, endonucleases, oxidative damage, and a host of other factors. The RecBCD enzyme is both a helicase that unwinds, or separates the strands of DNA, and a nuclease that makes single-stranded nicks in DNA. It catalyses exonucleolytic cleavage in either 5′- to 3′- or 3′- to 5′-direction to yield 5′-phosphooligonucleotides.

In molecular biology, a primosome is a protein complex responsible for creating RNA primers on single stranded DNA during DNA replication.

<span class="mw-page-title-main">Homologous recombination</span> Genetic recombination between identical or highly similar strands of genetic material

Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids.

<span class="mw-page-title-main">Replisome</span> Molecular complex

The replisome is a complex molecular machine that carries out replication of DNA. The replisome first unwinds double stranded DNA into two single strands. For each of the resulting single strands, a new complementary sequence of DNA is synthesized. The total result is formation of two new double stranded DNA sequences that are exact copies of the original double stranded DNA sequence.

<span class="mw-page-title-main">Holliday junction</span> Branched nucleic acid structure

A Holliday junction is a branched nucleic acid structure that contains four double-stranded arms joined. These arms may adopt one of several conformations depending on buffer salt concentrations and the sequence of nucleobases closest to the junction. The structure is named after Robin Holliday, the molecular biologist who proposed its existence in 1964.

<span class="mw-page-title-main">Prokaryotic DNA replication</span> DNA Replication in prokaryotes

Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. Although it is often studied in the model organism E. coli, other bacteria show many similarities. Replication is bi-directional and originates at a single origin of replication (OriC). It consists of three steps: Initiation, elongation, and termination.

Site-specific recombination, also known as conservative site-specific recombination, is a type of genetic recombination in which DNA strand exchange takes place between segments possessing at least a certain degree of sequence homology. Enzymes known as site-specific recombinases (SSRs) perform rearrangements of DNA segments by recognizing and binding to short, specific DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved, and rejoin the DNA strands. In some cases the presence of a recombinase enzyme and the recombination sites is sufficient for the reaction to proceed; in other systems a number of accessory proteins and/or accessory sites are required. Many different genome modification strategies, among these recombinase-mediated cassette exchange (RMCE), an advanced approach for the targeted introduction of transcription units into predetermined genomic loci, rely on SSRs.

The Tn3 transposon is a 4957 base pair mobile genetic element, found in prokaryotes. It encodes three proteins:

<span class="mw-page-title-main">Branch migration</span>

Branch migration is the process by which base pairs on homologous DNA strands are consecutively exchanged at a Holliday junction, moving the branch point up or down the DNA sequence. Branch migration is the second step of genetic recombination, following the exchange of two single strands of DNA between two homologous chromosomes. The process is random, and the branch point can be displaced in either direction on the strand, influencing the degree of which the genetic material is exchanged. Branch migration can also be seen in DNA repair and replication, when filling in gaps in the sequence. It can also be seen when a foreign piece of DNA invades the strand.

<span class="mw-page-title-main">Circular chromosome</span> Type of chromosome

A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes.

<span class="mw-page-title-main">MutS-1</span>

MutS is a mismatch DNA repair protein, originally described in Escherichia coli.

Crossover junction endodeoxyribonuclease, also known as Holliday junction resolvase, Holliday junction endonuclease, Holliday junction-cleaving endonuclease, Holliday junction-resolving endoribonuclease, crossover junction endoribonuclease, and cruciform-cutting endonuclease, is an enzyme involved in DNA repair and homologous recombination. Specifically, it performs endonucleolytic cleavage that results in single-stranded crossover between two homologous DNA molecules at the Holliday junction to produce recombinant DNA products for chromosomal segregation. This process is known as Holliday junction resolution.

<span class="mw-page-title-main">SLX4IP</span> Protein-coding gene in the species Homo sapiens

SLX4 interacting protein is a protein that in humans is encoded by the SLX4IP gene.

<span class="mw-page-title-main">Single-stranded binding protein</span> Class of proteins

Single-stranded binding proteins (SSBs) are a class of proteins that have been identified in both viruses and organisms from bacteria to humans.

<span class="mw-page-title-main">Cruciform DNA</span>

Cruciform DNA is a form of non-B DNA, or an alternative DNA structure. The formation of cruciform DNA requires the presence of palindromes called inverted repeat sequences. These inverted repeats contain a sequence of DNA in one strand that is repeated in the opposite direction on the other strand. As a result, inverted repeats are self-complementary and can give rise to structures such as hairpins and cruciforms. Cruciform DNA structures require at least a six nucleotide sequence of inverted repeats to form a structure consisting of a stem, branch point and loop in the shape of a cruciform, stabilized by negative DNA supercoiling.

Rolling hairpin replication (RHR) is a unidirectional, strand displacement form of DNA replication used by parvoviruses, a group of viruses that constitute the family Parvoviridae. Parvoviruses have linear, single-stranded DNA (ssDNA) genomes in which the coding portion of the genome is flanked by telomeres at each end that form hairpin loops. During RHR, these hairpin loops repeatedly unfold and refold to change the direction of DNA replication so that replication progresses in a continuous manner back and forth across the genome. RHR is initiated and terminated by an endonuclease encoded by parvoviruses that is variously called NS1 or Rep, and RHR is similar to rolling circle replication, which is used by ssDNA viruses that have circular genomes.

References

  1. "RuvA - Holliday junction ATP-dependent DNA helicase RuvA - Thermus thermophilus (Strain ATCC 27634 / DSM 579 / HB8) - ruvA gene & protein".
  2. 1 2 Bianco PR, Lu Y (May 2021). "Single-molecule insight into stalled replication fork rescue in Escherichia coli". Nucleic Acids Res. 49 (8): 4220–4238. doi:10.1093/nar/gkab142. PMC   8096234 . PMID   33744948.
  3. Donaldson JR, Courcelle CT, Courcelle J (September 2006). "RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli". J Biol Chem. 281 (39): 28811–21. doi: 10.1074/jbc.M603933200 . PMID   16895921.
  4. "RuvA". www.uniprot.org.
  5. "RuvB". www.uniprot.org. Retrieved 6 April 2024.
  6. "RuvC". www.uniprot.org. Retrieved 6 April 2024.

Further reading