RyhB

Last updated
Secondary structure for the RyhB RNA. The Sm-like protein Hfq binds to the AU-rich unstructured region of RyhB as indicated. Below the secondary structure, the primary sequence of RyhB is shown along with its putative binding interaction to the target mRNA sodB. The start codon for sodB is underlined. RyhB nucleotides that participate in the interaction are in bold. RyhB sodB.jpg
Secondary structure for the RyhB RNA. The Sm-like protein Hfq binds to the AU-rich unstructured region of RyhB as indicated. Below the secondary structure, the primary sequence of RyhB is shown along with its putative binding interaction to the target mRNA sodB. The start codon for sodB is underlined. RyhB nucleotides that participate in the interaction are in bold.

RyhB RNA is a 90 nucleotide RNA that down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator).

Contents

Discovery

The gene was independently identified in two screens, named RyhB by Wassarman et al. and called SrI by Argaman et al. and was found to be expressed only in stationary phase. [2] [3]

Function and regulation

RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encoding succinate dehydrogenase, as well as five other genes previously shown to be positively regulated by Fur by an unknown mechanism. These include two other genes encoding enzymes in the tricarboxylic acid cycle, acnA and fumA, two ferritin genes, ftnA and bfr, and a gene for superoxide dismutase, sodB. [4] A number of other genes have been predicted computationally and verified as targets by microarray analysis: napF, sodA, cysE, yciS, acpS, nagZ and dadA. [1] RyhB is bound by the Hfq protein, that increases its interaction with its target messages.

A comparative genomics target prediction approach suggests that the mRNAs of eleven additional iron containing proteins are controlled by RyhB in Escherichia coli . Two of those (erpA, nirB) and two additional targets that are not directly related to iron (nagZ, marA) were verified with a GFP reporter system. [5] [6]

It has been shown that RyhB has a role in targeting the polycistronic transcript iscRSUA for differential degradation. RyhB binds to the second cistron of iscRSUA, which encodes machinery for biosynthesis of Fe-S clusters. This binding promotes cleavage of the downstream iscSUA transcript. This cleavage leaves the 5′ IscR transcript which is a transcriptional regulator responsible regulating several genes that depend on cellular Fe-S level. [7]

More recent data indicate a potential dual function role for RyhB. In this capacity it may act both as an RNA-RNA interaction based regulator and as a transcript encoding for a small protein. [8]

RyhB is analogous to PrrF RNA found in Pseudomonas aeruginosa, [9] to HrrF RNA in Haemophilus species [10] and to IsaR1 in cyanobacteria. [11] [12]

First sRNA shown to mediate persistence to antibiotics in E.coli. The finding may lead to discovery of novel treatments for persistent infections. [13]

Naming

The RyhB gene name is an acronym composed of R for RNA, y for unknown function (after the protein naming convention), with the h representing the ten-minute-interval section of the E. coli map the gene is found in. The B comes from the fact that this was one of two RNA genes identified in this interval. [3] Other RNAs using this nomenclature include RydB RNA, RyeB RNA, RyeE RNA and RyfA RNA.

Related Research Articles

The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.

<span class="mw-page-title-main">DsrA RNA</span> Non-coding RNA

DsrA RNA is a non-coding RNA that regulates both transcription, by overcoming transcriptional silencing by the nucleoid-associated H-NS protein, and translation, by promoting efficient translation of the stress sigma factor, RpoS. These two activities of DsrA can be separated by mutation: the first of three stem-loops of the 85 nucleotide RNA is necessary for RpoS translation but not for anti-H-NS action, while the second stem-loop is essential for antisilencing and less critical for RpoS translation. The third stem-loop, which behaves as a transcription terminator, can be substituted by the trp transcription terminator without loss of either DsrA function. The sequence of the first stem-loop of DsrA is complementary with the upstream leader portion of RpoS messenger RNA, suggesting that pairing of DsrA with the RpoS message might be important for translational regulation. The structures of DsrA and DsrA/rpoS complex were studied by NMR. The study concluded that the sRNA contains a dynamic conformational equilibrium for its second stem–loop which might be an important mechanism for DsrA to regulate the translations of its multiple target mRNAs.

<span class="mw-page-title-main">GcvB RNA</span>

The gcvB RNA gene encodes a small non-coding RNA involved in the regulation of a number of amino acid transport systems as well as amino acid biosynthetic genes. The GcvB gene is found in enteric bacteria such as Escherichia coli. GcvB regulates genes by acting as an antisense binding partner of the mRNAs for each regulated gene. This binding is dependent on binding to a protein called Hfq. Transcription of the GcvB RNA is activated by the adjacent GcvA gene and repressed by the GcvR gene. A deletion of GcvB RNA from Y. pestis changed colony shape as well as reducing growth. It has been shown by gene deletion that GcvB is a regulator of acid resistance in E. coli. GcvB enhances the ability of the bacterium to survive low pH by upregulating the levels of the alternate sigma factor RpoS. A polymeric form of GcvB has recently been identified. Interaction of GcvB with small RNA SroC triggers the degradation of GcvB by RNase E, lifting the GcvB-mediated mRNA repression of its target genes.

<span class="mw-page-title-main">OmrA-B RNA</span>

The OmrA-B RNA gene family is a pair of homologous OmpR-regulated small non-coding RNA that was discovered in E. coli during two large-scale screens. OmrA-B is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well. RygB is adjacent to RygA a closely related RNA. These RNAs bind to the Hfq protein and regulate gene expression by antisense binding. They negatively regulate the expression of several genes encoding outer membrane proteins, including cirA, CsgD, fecA, fepA and ompT by binding in the vicinity of the Shine-Dalgarno sequence, suggesting the control of these targets is dependent on Hfq protein and RNase E. Taken together, these data suggest that OmrA-B participates in the regulation of outer membrane composition, responding to environmental conditions.

<span class="mw-page-title-main">Sib RNA</span>

Sib RNA refers to a group of related non-coding RNA. They were originally named QUAD RNA after they were discovered as four repeat elements in Escherichia coli intergenic regions. The family was later renamed Sib when it was discovered that the number of repeats is variable in other species and in other E. coli strains.

<span class="mw-page-title-main">RprA RNA</span>

The RprA RNA gene encodes a 106 nucleotide regulatory non-coding RNA. Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site.

<span class="mw-page-title-main">SgrS RNA</span>

SgrS is a 227 nucleotide small RNA that is activated by SgrR in Escherichia coli during glucose-phosphate stress. The nature of glucose-phosphate stress is not fully understood, but is correlated with intracellular accumulation of glucose-6-phosphate. SgrS helps cells recover from glucose-phosphate stress by base pairing with ptsG mRNA and causing its degradation in an RNase E dependent manner. Base pairing between SgrS and ptsG mRNA also requires Hfq, an RNA chaperone frequently required by small RNAs that affect their targets through base pairing. The inability of cells expressing sgrS to create new glucose transporters leads to less glucose uptake and reduced levels of glucose-6-phosphate. SgrS is an unusual small RNA in that it also encodes a 43 amino acid functional polypeptide, SgrT, which helps cells recover from glucose-phosphate stress by preventing glucose uptake. The activity of SgrT does not affect the levels of ptsG mRNA of PtsG protein. It has been proposed that SgrT exerts its effects through regulation of the glucose transporter, PtsG.

<span class="mw-page-title-main">MicA RNA</span>

The MicA RNA is a small non-coding RNA that was discovered in E. coli during a large scale screen. Expression of SraD is highly abundant in stationary phase, but low levels could be detected in exponentially growing cells as well.

<span class="mw-page-title-main">ArcZ RNA</span>

In molecular biology the ArcZ RNA is a small non-coding RNA (ncRNA). It is the functional product of a gene which is not translated into protein. ArcZ is an Hfq binding RNA that functions as an antisense regulator of a number of protein coding genes.

<span class="mw-page-title-main">GlmZ RNA</span> Small non-coding RNA (ncRNA)

GlmZ is a small non-coding RNA (ncRNA). It is the functional product of a gene which is not translated into protein.

<span class="mw-page-title-main">SroB RNA</span>

The sroB RNA is a non-coding RNA gene of 90 nucleotides in length. sroB is found in several Enterobacterial species but its function is unknown. SroB is found in the intergenic region on the opposite strand to the ybaK and ybaP genes. SroB is expressed in stationary phase. Experiments have shown that SroB is a Hfq binding sRNA.

<span class="mw-page-title-main">IscR stability element</span>

The IscR stability element is a conserved secondary structure found in the intergenic regions of iscRSUA polycistronic mRNA. This secondary structure prevents the degradation of the iscR mRNA.

<span class="mw-page-title-main">MicX sRNA</span>

MicX sRNA is a small non-coding RNA found in Vibrio cholerae. It was given the name MicX as it has a similar function to MicA, MicC and MicF in E. coli. MicX sRNA negatively regulates an outer membrane protein and also a component of an ABC transporter. These interactions were predicted and then confirmed using a DNA microarray.

Bacterial small RNAs (bsRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<span class="mw-page-title-main">FnrS RNA</span>

FnrS RNA is a family of Hfq-binding small RNA whose expression is upregulated in response to anaerobic conditions. It is named FnrS because its expression is strongly dependent on fumarate and nitrate reductase regulator (FNR), a direct oxygen availability sensor.

<span class="mw-page-title-main">TisB-IstR toxin-antitoxin system</span> Biochemical process related to DNA damage

The TisB-IstR toxin-antitoxin system is the first known toxin-antitoxin system which is induced by the SOS response in response to DNA damage.

<span class="mw-page-title-main">Toxin-antitoxin system</span> Biological process

A toxin-antitoxin system consists of a "toxin" and a corresponding "antitoxin", usually encoded by closely linked genes. The toxin is usually a protein while the antitoxin can be a protein or an RNA. Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies. When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK).

<i>Escherichia coli</i> sRNA

Escherichia coli contains a number of small RNAs located in intergenic regions of its genome. The presence of at least 55 of these has been verified experimentally. 275 potential sRNA-encoding loci were identified computationally using the QRNA program. These loci will include false positives, so the number of sRNA genes in E. coli is likely to be less than 275. A computational screen based on promoter sequences recognised by the sigma factor sigma 70 and on Rho-independent terminators predicted 24 putative sRNA genes, 14 of these were verified experimentally by northern blotting. The experimentally verified sRNAs included the well characterised sRNAs RprA and RyhB. Many of the sRNAs identified in this screen, including RprA, RyhB, SraB and SraL, are only expressed in the stationary phase of bacterial cell growth. A screen for sRNA genes based on homology to Salmonella and Klebsiella identified 59 candidate sRNA genes. From this set of candidate genes, microarray analysis and northern blotting confirmed the existence of 17 previously undescribed sRNAs, many of which bind to the chaperone protein Hfq and regulate the translation of RpoS. UptR sRNA transcribed from the uptR gene is implicated in suppressing extracytoplasmic toxicity by reducing the amount of membrane-bound toxic hybrid protein.

<span class="mw-page-title-main">Ferric uptake regulator family</span>

In molecular biology, the ferric uptake regulator family is a family of bacterial proteins involved in regulating metal ion uptake and in metal homeostasis. The family is named for its founding member, known as the ferric uptake regulator or ferric uptake regulatory protein (Fur). Fur proteins are responsible for controlling the intracellular concentration of iron in many bacteria. Iron is essential for most organisms, but its concentration must be carefully managed over a wide range of environmental conditions; high concentrations can be toxic due to the formation of reactive oxygen species.

The fnr gene of Escherichia coli encodes a transcriptional activator (FNR) which is required for the expression of a number of genes involved in anaerobic respiratory pathways. The FNR protein of E. coli is an oxygen – responsive transcriptional regulator required for the switch from aerobic to anaerobic metabolism.

"Type III mutants, originally frdB, were designated fnr because they were defective in fumarate and nitrate reduction and impaired in their ability to produce gas." - Lambden and Guest, 1976 Journal of General Microbiology97, 145-160

References

  1. 1 2 Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G, et al. (2006). "Target prediction for small, noncoding RNAs in bacteria". Nucleic Acids Research. 34 (9): 2791–2802. doi:10.1093/nar/gkl356. PMC   1464411 . PMID   16717284.
  2. Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S (June 2001). "Novel small RNA-encoding genes in the intergenic regions of Escherichia coli". Current Biology. 11 (12): 941–950. doi: 10.1016/S0960-9822(01)00270-6 . PMID   11448770.
  3. 1 2 Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (July 2001). "Identification of novel small RNAs using comparative genomics and microarrays". Genes & Development. 15 (13): 1637–1651. doi:10.1101/gad.901001. PMC   312727 . PMID   11445539.
  4. Massé E, Gottesman S (April 2002). "A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli". Proceedings of the National Academy of Sciences of the United States of America. 99 (7): 4620–4625. Bibcode:2002PNAS...99.4620M. doi: 10.1073/pnas.032066599 . PMC   123697 . PMID   11917098.
  5. Wright PR, Richter AS, Papenfort K, Mann M, Vogel J, Hess WR, Backofen R, Georg J (September 2013). "Comparative genomics boosts target prediction for bacterial small RNAs". Proceedings of the National Academy of Sciences of the United States of America. 110 (37): E3487–3496. Bibcode:2013PNAS..110E3487W. doi: 10.1073/pnas.1303248110 . PMC   3773804 . PMID   23980183.
  6. Urban JH, Vogel J (2007). "Translational control and target recognition by Escherichia coli small RNAs in vivo". Nucleic Acids Research. 35 (3): 1018–1037. doi:10.1093/nar/gkl1040. PMC   1807950 . PMID   17264113.
  7. Desnoyers G, Morissette A, Prévost K, Massé E (June 2009). "Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA". The EMBO Journal. 28 (11): 1551–1561. doi:10.1038/emboj.2009.116. PMC   2693151 . PMID   19407815.
  8. Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S (February 2017). "Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP". BMC Genomics. 18 (1): 216. doi:10.1186/s12864-017-3586-9. PMC   5331693 . PMID   28245801.
  9. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (June 2004). "Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis". Proceedings of the National Academy of Sciences of the United States of America. 101 (26): 9792–9797. Bibcode:2004PNAS..101.9792W. doi: 10.1073/pnas.0403423101 . PMC   470753 . PMID   15210934.
  10. Santana EA, Harrison A, Zhang X, Baker BD, Kelly BJ, White P, Liu Y, Munson RS (2014-01-01). "HrrF is the Fur-regulated small RNA in nontypeable Haemophilus influenzae". PLOS ONE. 9 (8): e105644. Bibcode:2014PLoSO...9j5644S. doi: 10.1371/journal.pone.0105644 . PMC   4144887 . PMID   25157846.
  11. Georg J, Kostova G, Vuorijoki L, Schön V, Kadowaki T, Huokko T, Baumgartner D, Müller M, Klähn S, Allahverdiyeva Y, Hihara Y, Futschik ME, Aro EM, Hess WR (May 2017). "Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1" (PDF). Current Biology. 27 (10): 1425–1436.e7. doi: 10.1016/j.cub.2017.04.010 . PMID   28479323.
  12. Rübsam H, Kirsch F, Reimann V, Erban A, Kopka J, Hagemann M, Hess WR, Klähn S (February 2018). "The iron-stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium Synechocystis sp. PCC 6803". Environmental Microbiology. 20 (8): 2757–2768. doi:10.1111/1462-2920.14079. PMID   29468839. S2CID   4350134.
  13. Zhang S, Liu S, Wu N, Yuan Y, Zhang W, Zhang Y (2018). "Escherichia coli by Reducing Cellular Metabolism". Frontiers in Microbiology. 9: 136. doi: 10.3389/fmicb.2018.00136 . PMC   5808207 . PMID   29467745.

Further reading