Samira Musah

Last updated
Samira Musah
Alma mater SUNY Binghamton (BS)
University of Wisconsin-Madison (PhD)
Scientific career
Fields Biomedical engineering
Institutions Duke University Pratt School of Engineering
Thesis  (2012)
Doctoral advisor Laura L. Kiessling

Samira Musah is an American biomedical engineer and professor at the Duke University Pratt School of Engineering. She is known for her work in biomimetic systems, in particular for her work in developing an organ-on-a-chip model of the kidney glomerulus during her postdoctoral fellowship.

Contents

Education

Musah received her BS in chemistry at SUNY Binghamton, where she worked under Omowunmi Sadik for her undergraduate thesis. [1] [2] Musah completed her PhD at the University of Wisconsin-Madison, where her work focused on material environments for induced pluripotent stem cells. [3]

Career

From 2014 to 2018, Musah was a Dean's Postdoctoral Fellow at Harvard Medical School's Wyss Institute for Biologically Inspired Engineering, where she completed her training between the labs of George Church and Donald E. Ingber. [4] At the Wyss Institute, she led a project to develop a functioning in vitro model glomerulus with differentiation of stem cells into mature podocytes. [5] [6] [7] She was honored for her interdisciplinary work in this project by a Physics World "Faces of Physics" short documentary. [8] [9]

Since 2019, Musah has been an assistant professor at Duke. As a member of the Duke MEDx program, Musah holds a joint appointment between the engineering and medical programs. [10] Her laboratory focuses on understanding human kidney development and guided differentiation of induced pluripotent stem cells. [11] At Duke, Musah has spoken of the value of a writing program for underrepresented faculty in which she participated. [12]

Musah's interest include Induced pluripotent stem cells (iPS cells), disease mechanisms, regenerative medicine, molecular and cellular basis of human kidney development and disease. Organ engineering, patient-specific disease models, biomarkers, therapeutic discover, tissue and organ transplantation are also of interest. Other interests include microphysiological systems (including organs-on-chips and organoids), matrix biology, mechanotransduction, mechanobiology, and disease biophysics.

In the Musah Lab, they work to understand how molecular signals and biophysical forces function synergistically or independently guiding organ development and physiology. The Lab looks at how these processes can be therapeutically harnessed for treatment of human disease, particularly kidney disease. The Musah Lab works on engineering stem cell fate for applications in human kidney disease, extra-renal complications, and therapeutic development.

Honors and awards

Published works

"Musah, S, Uncovering SARS-CoV-2 kidney tropism.," Nature Reviews. Molecular Cell Biology, vol 22 no. 8 (2021) [10.1038/s41580-021-00370-w] [abs]" [17]

"Introductions to the Community: Early-Career Researchers in the Time of COVID-19.," Cell Stem Cell, vol 27 no. 2 (2020), pp. 200-201 [10.1016/j.stem.2020.07.016] [abs] [18]

Burt, M; Bhattachaya, R; Okafor, AE; Musah, S, "Guided Differentiation of Mature Kidney Podocytes from Human Induced Pluripotent Stem Cells Under Chemically Defined Conditions.," Journal of Visualized Experiments : Jove no. 161 (2020) [10.3791/61299] [abs] [19]

Related Research Articles

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

<span class="mw-page-title-main">Tissue engineering</span> Biomedical engineering discipline

Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. Tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. While it was once categorized as a sub-field of biomaterials, having grown in scope and importance, it can is considered as a field of its own.

<span class="mw-page-title-main">Embryonic stem cell</span> Type of pluripotent blastocystic stem cell

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.

<span class="mw-page-title-main">Organoid</span> Miniaturized and simplified version of an organ

An organoid is a miniaturised and simplified version of an organ produced in vitro in three dimensions that mimics the key functional, structural, and biological complexity of that organ. It is derived from one or a few cells from a tissue, embryonic stem cells, or induced pluripotent stem cells, which can self-organize in three-dimensional culture owing to their self-renewal and differentiation capacities. The technique for growing organoids has rapidly improved since the early 2010s, and The Scientist named it one of the biggest scientific advancements of 2013. Scientists and engineers use organoids to study development and disease in the laboratory, for drug discovery and development in industry, personalized diagnostics and medicine, gene and cell therapies, tissue engineering, and regenerative medicine.

<span class="mw-page-title-main">Induced pluripotent stem cell</span> Pluripotent stem cell generated directly from a somatic cell

Induced pluripotent stem cells are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes, collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells. Shinya Yamanaka was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."

<span class="mw-page-title-main">Shinya Yamanaka</span> Japanese stem cell researcher

Shinya Yamanaka is a Japanese stem cell researcher and a Nobel Prize laureate. He is a professor and the director emeritus of Center for iPS Cell Research and Application, Kyoto University; as a senior investigator at the UCSF-affiliated Gladstone Institutes in San Francisco, California; and as a professor of anatomy at University of California, San Francisco (UCSF). Yamanaka is also a past president of the International Society for Stem Cell Research (ISSCR).

<span class="mw-page-title-main">Cell potency</span> Ability of a cell to differentiate into other cell types

Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency.

An organ-on-a-chip (OOC) is a multi-channel 3-D microfluidic cell culture, integrated circuit (chip) that simulates the activities, mechanics and physiological response of an entire organ or an organ system. It constitutes the subject matter of significant biomedical engineering research, more precisely in bio-MEMS. The convergence of labs-on-chips (LOCs) and cell biology has permitted the study of human physiology in an organ-specific context. By acting as a more sophisticated in vitro approximation of complex tissues than standard cell culture, they provide the potential as an alternative to animal models for drug development and toxin testing.

<span class="mw-page-title-main">Cellular Dynamics International</span> Biotechnology company

Fujifilm Cellular Dynamics, Inc. (FCDI) is a large scale manufacturer of human cells, created from induced pluripotent stem cells, for use in basic research, drug discovery and regenerative medicine applications.

Directed differentiation is a bioengineering methodology at the interface of stem cell biology, developmental biology and tissue engineering. It is essentially harnessing the potential of stem cells by constraining their differentiation in vitro toward a specific cell type or tissue of interest. Stem cells are by definition pluripotent, able to differentiate into several cell types such as neurons, cardiomyocytes, hepatocytes, etc. Efficient directed differentiation requires a detailed understanding of the lineage and cell fate decision, often provided by developmental biology.

Regeneration in humans is the regrowth of lost tissues or organs in response to injury. This is in contrast to wound healing, or partial regeneration, which involves closing up the injury site with some gradation of scar tissue. Some tissues such as skin, the vas deferens, and large organs including the liver can regrow quite readily, while others have been thought to have little or no capacity for regeneration following an injury.

Lorenz Studer is a Swiss biologist. He is the founder and director of the Center for Stem Cell Biology at Memorial-Sloan Kettering Cancer Center in New York City. He is a developmental biologist and neuroscientist who is pioneering the generation of midbrain dopamine neurons for transplantation and clinical applications. His expertise in cell engineering spans a wide range of cells/tissues within the nervous system geared toward disease modeling and exploring cell replacement therapy. Currently, he is a member of the Developmental Biology Program and Department of Neurosurgery at Memorial Sloan-Kettering Cancer Center and a Professor of Neuroscience at Weill Cornell Medical College in New York City, NY.

<span class="mw-page-title-main">Melissa Little</span> Australian scientist and academic (born 1963)

Melissa Helen Little is an Australian scientist and academic, currently Theme Director of Cell Biology, heading up the Kidney Regeneration laboratory at the Murdoch Children's Research Institute. She is also a Professor in the Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, and Program Leader of Stem Cells Australia. In January 2022, she became CEO of the Novo Nordisk Foundation Center for Stem Cell Medicine reNEW, an international stem cell research center based at University of Copenhagen, and a collaboration between the University of Copenhagen, Denmark, Murdoch Children’s Research Institute, Australia, and Leiden University Medical Center, The Netherlands.

Kristin K. Baldwin is an American scientist who is a professor at the Department of Genetics and Development at Columbia University. Her research focuses on using reprogrammed and induced pluripotent stem cells to identify mechanisms and therapies related to human genetic risk for neurologic and cardiovascular disease. Her lab also studies how disease and aging affect the genome; they have used cloning to produce the first complete genome sequence of a single neuron and helped assess the effect of aging on induced pluripotent stem cells that may be used for cell therapies. They also design bespoke neuronal cells in a dish to understand brain function and disease. Baldwin's earlier work included being the first to clone a mouse from a neuron and being one of three groups to first produce an entire mouse from a skin cell by generating induced pluripotent stem cells. epigenetic changes of the genome and the brain.

<span class="mw-page-title-main">Christine L. Mummery</span>

Christine L. Mummery (1953) is an appointed professor of Developmental Biology at Leiden University and the head of the Department of Anatomy and Embryology at Leiden University Medical Center in the Netherlands.

<span class="mw-page-title-main">Milica Radisic</span> Serbian Canadian tissue engineer

Milica Radisic is a Serbian Canadian tissue engineer, academic and researcher. She is a professor at the University of Toronto’s Institute of Biomaterials and Biomedical Engineering, and the Department of Chemical Engineering and Applied Chemistry. She co-founded TARA Biosystems and is a senior scientist at the Toronto General Hospital Research Institute.

Katja Schenke-Layland is the Professor of Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine at the University of Tübingen. She is the Director of the NMI Natural and Medical Sciences Institute at the University Tübingen in Reutlingen, Study Dean of Medical Technologies at the University of Tübingen, and Founding Director of the Institute of Biomedical Engineering at the Medical Faculty of the University Tübingen. She is also the Founding Director of the 3R Center for In Vitro Models and Alternatives to Animal Testing Tübingen.

Valentina Fossati is an Italian stem cell biologist. She is a Senior Research Investigator at the New York Stem Cell Foundation. Her research is focused on developing human stem cell-based models to study the role of glia in neurodegeneration and neuroinflammation.

Nissim Benvenisty is Professor of Genetics, the Herbert Cohn Chair in Cancer Research and the Director of “The Azrieli Center for Stem Cells and Genetic Research” at the Alexander Silberman Institute of Life Sciences, Hebrew University.

References

  1. Kikandi, Samuel N.; Musah, Samira; Lee, Kyoungyun; Hassani, John; Rajan, Shawn; Zhou, Ailing; Sadik, Omowunmi A. (2007). "Comparative Studies of Quercetin Interactions with Monophosphate Nucleotides Using UV-Vis Spectroscopy and Electrochemical Techniques". Electroanalysis. 19 (19–20): 2131–2140. doi:10.1002/elan.200703954. ISSN   1521-4109.
  2. "Principal Investigator: Samira Musah, Ph.D. | Musah Lab". musahlab.pratt.duke.edu. Retrieved 2021-06-08.
  3. Derda, Ratmir; Musah, Samira; Orner, Brendan P.; Klim, Joseph R.; Li, Lingyin; Kiessling, Laura L. (2010-02-03). "High-Throughput Discovery of Synthetic Surfaces That Support Proliferation of Pluripotent Cells". Journal of the American Chemical Society. 132 (4): 1289–1295. doi:10.1021/ja906089g. ISSN   0002-7863. PMC   2819098 . PMID   20067240.
  4. "Samira Musah | IMPACT Program" . Retrieved 2021-06-08.
  5. Musah, Samira; Dimitrakakis, Nikolaos; Camacho, Diogo M.; Church, George M.; Ingber, Donald E. (July 2018). "Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip". Nature Protocols. 13 (7): 1662–1685. doi:10.1038/s41596-018-0007-8. ISSN   1750-2799. PMC   6701189 . PMID   29995874.
  6. "Futuristic organ-on-a-chip technology now seems more realistic than ever". Salon. 2018-10-21. Retrieved 2021-06-08.
  7. "Kidney filtration on a chip: Here's how it could be done". Medical Design and Outsourcing. 2017-07-06. Retrieved 2021-06-08.
  8. "Faces of Physics: human organs on a chip". Physics World. 2017-10-03. Retrieved 2021-06-08.
  9. "Celebrating International Women's Day". Physics World. 2018-03-08. Retrieved 2021-06-08.
  10. "MEDx Investigators". MEDx. 2018-08-23. Retrieved 2021-06-08.
  11. "Engineering Stem Cells to Understand Human Tissue Development and Disease – J. Crayton Pruitt Family Department of Biomedical Engineering" . Retrieved 2021-06-08.
  12. "A Community That Writes Together". today.duke.edu. 20 March 2020. Retrieved 2021-06-08.
  13. "Baxter Young Investigator Award - 2017 Winners". Baxter. Retrieved 2021-06-08.
  14. "Whitehead Scholarship in Biomedical Research. Whitehead Foundation. | Scholars@Duke". scholars.duke.edu. Retrieved 2021-06-08.
  15. Hinton, Antentor O. Jr. "100 inspiring Black scientists in America". crosstalk.cell.com. Retrieved 2021-06-08.
  16. "Congratulations to Dr. Samira Musah on her feature by Nature Biotechnology | Duke Black Think Tank". blackthinktank.duke.edu. February 2021. Retrieved 2021-06-08.
  17. Musah, Samira (2021). "Uncovering SARS-CoV-2 kidney tropism". Nature Reviews. Molecular Cell Biology. 22 (8): 509. doi:10.1038/s41580-021-00370-w. ISSN   1471-0072. PMC   8049073 . PMID   33859371.
  18. Shahbazi, Marta; Musah, Samira; Sharma, Ankur; Bajaj, Jeevisha; Donati, Giacomo; Zhang, Weiqi (2020-08-06). "Introductions to the Community: Early-Career Researchers in the Time of COVID-19". Cell Stem Cell. 27 (2): 200–201. doi:10.1016/j.stem.2020.07.016. ISSN   1934-5909. PMC   7409799 . PMID   32763182.
  19. Burt, Morgan; Bhattachaya, Rohan; Okafor, Arinze E.; Musah, Samira (2020-07-02). "Guided Differentiation of Mature Kidney Podocytes from Human Induced Pluripotent Stem Cells Under Chemically Defined Conditions". Journal of Visualized Experiments (161): e61299. doi:10.3791/61299. ISSN   1940-087X. PMID   32716365. S2CID   220796067.