Satellite navigation software

Last updated

Satellite navigation software or GNSS navigation software a category of software that provide positioning services by utilizing data from satellite navigation systems.

Contents

Key functions of satellite navigation software usually includes:

  1. Positioning: determines the device's precise location using signals from multiple satellites
  2. Route planning: calculates optimized route based on user needs, such as starting point, destination, and travelling mean, et cetera. This functionality could be extended to driving assistent.
  3. Tracking: shows where the tracked object have been. (This functionality relies past positioning data to be stored, so not just the "software" technically).

Additional functions that extends the capabilities of satellite navigation software includes:

  1. Searching: finds locations with addresses or GNSS coordinates (latitude and longitude).
  2. Traffic updates: shows real-time traffic information, enabling the software to suggest a better route during driving.
  3. Offline map: allows regions of map to be pre-downloaded, enabling usage with minimal connectivity.
  4. Bookmarking: saves locations for later use.

Requirement

Hardware-wise, a GNSS receiver is needed to interpret satellite signals and compute the user’s location. Nowadays, it is usually a single integrated circuit (IC).

Satellite navigation software is most commonly used on mobile devices, particularly mobile phones, to provide the positioning functionality. However, relying exclusively on GNSS data is not accurate enough due to the limitations of GNSS services, To address this, Assisted GNSS (A-GNSS) is used instead. By leveraging data from nearby cellular towers, Wi-Fi, and Bluetooth connections, A-GNSS enhances accuracy, reduces power consumption, lowers the risk of signal blockage, and effectively mitigates the limitations of GNSS. [1]

Software products

There are many navigation software products available. The primary distinction is whether it is designed for use on land, water or air. [2] Below is a short-listed software products:

Land-based

Free and open source

Proprietary (available for free)

Commercial

Marine navigation software

Navigation software for use on the water has many features in common with land-based GNSS navigation software. It can use electronic navigation chart or raster charts, usually provides user ability to plan routes and set waypoints, and may have live GPS tracking capabilities. In addition, marine navigation software often has option to control external autopilot for automated boat navigation. It may incorporate GRIB weather overlay on the chart, Tide predictions and other related information services of additional use to mariners.

Free and open source

Aeronautical navigation software

This kind of software usually creates a modern glass cockpit and uses more than just a single GNSS sensor to assist the navigation. Such sensors are Attitude and Heading Reference Systems (AHRS) and Inertial Measurement Unit (IMU) sensors.

See also

Related Research Articles

<span class="mw-page-title-main">Global Positioning System</span> American satellite-based radio navigation service

The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radio navigation system owned by the United States Space Force and operated by Mission Delta 31. It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls, and maintains the GPS system, it is freely accessible to anyone with a GPS receiver.

<span class="mw-page-title-main">European Geostationary Navigation Overlay Service</span> System that enhances the accuracy of GPS receivers

The European Geostationary Navigation Overlay Service (EGNOS) is a satellite-based augmentation system (SBAS) developed by the European Space Agency and EUROCONTROL on behalf of the European Commission. Currently, it supplements GPS by reporting on the reliability and accuracy of their positioning data and sending out corrections. The system will supplement Galileo in the future version 3.0.

In the context of information security, and especially network security, a spoofing attack is a situation in which a person or program successfully identifies as another by falsifying data, to gain an illegitimate advantage.

Receiver autonomous integrity monitoring (RAIM) is a technology developed to assess the integrity of individual signals collected and integrated by the receiver units employed in a Global Navigation Satellite System (GNSS). The integrity of received signals and resulting correctness and precision of derived receiver location are of special importance in safety-critical GNSS applications, such as in aviation or marine navigation.

<span class="mw-page-title-main">Automotive navigation system</span> Part of the automobile controls

An automotive navigation system is part of the automobile controls or a third party add-on used to find direction in an automobile. It typically uses a satellite navigation device to get its position data which is then correlated to a position on a road. When directions are needed routing can be calculated. On the fly traffic information can be used to adjust the route.

<span class="mw-page-title-main">Assisted GNSS</span> System to improve the time-to-first-fix of a GNSS receiver

Assisted GNSS (A-GNSS) is a GNSS augmentation system that often significantly improves the startup performance—i.e., time-to-first-fix (TTFF)—of a global navigation satellite system (GNSS). A-GNSS works by providing the necessary data to the device via a radio network instead of the slow satellite link, essentially "warming up" the receiver for a fix. When applied to GPS, it is known as assisted GPS or augmented GPS. Other local names include A-GANSS for Galileo and A-Beidou for BeiDou.

<span class="mw-page-title-main">Satellite navigation</span> Use of satellite signals for geo-spatial positioning

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2024, four global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo.

<span class="mw-page-title-main">Differential GPS</span> Enhancement to the Global Positioning System providing improved accuracy

Differential Global Positioning Systems (DGPSs) supplement and enhance the positional data available from global navigation satellite systems (GNSSs). A DGPS can increase accuracy of positional data by about a thousandfold, from approximately 15 metres (49 ft) to 1–3 centimetres.

<span class="mw-page-title-main">Real-time kinematic positioning</span> Satellite navigation technique used to enhance the precision of position data

Real-time kinematic positioning (RTK) is the application of surveying to correct for common errors in current satellite navigation (GNSS) systems. It uses measurements of the phase of the signal's carrier wave in addition to the information content of the signal and relies on a single reference station or interpolated virtual station to provide real-time corrections, providing up to centimetre-level accuracy. With reference to GPS in particular, the system is commonly referred to as carrier-phase enhancement, or CPGPS. It has applications in land surveying, hydrographic surveying, and in unmanned aerial vehicle navigation.

<span class="mw-page-title-main">GPS for the visually impaired</span>

Since the Global Positioning System (GPS) was introduced in the late 1980s there have been many attempts to integrate it into a navigation-assistance system for blind and visually impaired people.

<span class="mw-page-title-main">TomTom</span> Dutch manufacturer of automotive navigation systems

TomTom N.V. is a Dutch multinational developer and creator of location technology and consumer electronics. Founded in 1991 and headquartered in Amsterdam, TomTom released its first generation of satellite navigation devices to market in 2004. As of 2019 the company has over 4,500 employees worldwide and operations in 29 countries throughout Europe, Asia-Pacific, and the Americas.

iQue was a line of personal digital assistants (PDA) with integrated Global Positioning System (GPS) receivers sold by Garmin. It was introduced in 2003 and discontinued in mid-2008.

A positioning system is a system for determining the position of an object in space. Positioning system technologies exist ranging from interplanetary coverage with meter accuracy to workspace and laboratory coverage with sub-millimeter accuracy. A major subclass is made of geopositioning systems, used for determining an object's position with respect to Earth, i.e., its geographical position; one of the most well-known and commonly used geopositioning systems is the Global Positioning System (GPS) and similar global navigation satellite systems (GNSS).

Augmentation of a global navigation satellite system (GNSS) is a method of improving the navigation system's attributes, such as precision, reliability, and availability, through the integration of external information into the calculation process. There are many such systems in place, and they are generally named or described based on how the GNSS sensor receives the external information. Some systems transmit additional information about sources of error, others provide direct measurements of how much the signal was off in the past, while a third group provides additional vehicle information to be integrated in the calculation process.

Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.

<span class="mw-page-title-main">Indoor positioning system</span> Network of devices used to wirelessly locate objects inside a building

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.

In the field of geodesy, Receiver Independent Exchange Format (RINEX) is a data interchange format for raw satellite navigation system data. This allows the user to post-process the received data to produce a more accurate result — usually with other data unknown to the original receiver, such as better models of the atmospheric conditions at time of measurement.

<span class="mw-page-title-main">Satellite navigation device</span> Device that can calculate its geographical position based on satellite information

A satellite navigation device or satnav device, also known as a satellite navigation receiver or satnav receiver or simply a GPS device, is a user equipment that uses satellites of the Global Positioning System (GPS) or similar global navigation satellite systems (GNSS). A satnav device can determine the user's geographic coordinates and may display the geographical position on a map and offer routing directions.

<span class="mw-page-title-main">Turn-by-turn navigation</span> Feature of GPS navigation devices

Turn-by-turn navigation is a feature of some satellite navigation devices where directions for a selected route are continually presented to the user in the form of spoken or visual instructions. The system keeps the user up-to-date about the best route to the destination, and is often updated according to changing factors such as traffic and road conditions. Turn-by-turn systems typically use an electronic voice to inform the user whether to turn left or right, the street name, and the distance to the next turn.

A software GNSS receiver is a Global Navigation Satellite System (GNSS) receiver that has been designed and implemented using software-defined radio.

References

  1. Han, Kahee; Lee, Jung-Hoon; Im, Ji-Ung; Won, Jong-Hoon (15 December 2018). "A-GNSS Performance Test in Various Urban Environments by Using a Commercial Low Cost GNSS Receiver and Service".{{cite web}}: CS1 maint: url-status (link)
  2. https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps/usersegments/aviation
  3. "TECH TALK: Local company takes on Google Maps". 28 June 2020.