Science Realm

Last updated

Science Realm is a United States Government project with the aim of creating a vertical-takeoff horizontal-landing (VTOHL) single-stage-to-orbit (SSTO) craft, the term is also associated with the software this project uses to simulate takeoff and landing. [1]

Contents

Science Dawn

Science Realm's predecessor Science Dawn was a classified program to build a rocket-launched supersonic horizontal-take off horizontal-landing (HOTOL) SSTO spaceplane. However, it became clear that horizontal takeoff requirement was an inappropriate application of rocket thrust-to-weight ratio; the angle and relative size of rocket and earth meant the path of least effort was almost completely vertical (completely against gravitation). Consequently, SCIENCE DAWN ended, and the focus transferred to SCIENCE REALM. [2] [3]

Spaceplane

The Space Maneuver Vehicle (SMV) completed a successful autonomous approach and landing on its first flight test on 11 August 1998. The unmanned vehicle was dropped from a US Army UH-60 Black Hawk helicopter at an altitude of 9,000 feet, performed a controlled approach and landed on the runway. The total flight time was 90 seconds. During the initial portion of its free fall, the maneuver vehicle was stabilized by a parachute. After it is released from the parachute, the vehicle accelerated and perform a controlled glide. This glide simulated the final approach and landing phases of such a vehicle returning from orbit. [4]

Performance requirements

The project is split into four Maximum Performance Missions Sets, which attempt to define the maximum conditions for four general uses of the spaceplane. Due to the high secrecy of the project, instead of giving a threshold and objective for each mission requirement, missions sets are defined. [4]

Mark I

Demonstrator or ACTD non-orbital vehicle that can only pop up

Mark II

Mark 2 defines an orbit capable vehicle with these requirements

Mark III

Mark IV

See also

Spacecraft and spaceplane propulsion

Not SSTO

Other spaceplane and spacecraft vehicles

Related Research Articles

British Aerospace HOTOL UK Spaceplane design of 1980s

HOTOL, for Horizontal Take-Off and Landing, was a 1980s British design for a single-stage-to-orbit (SSTO) spaceplane that was to be powered by an airbreathing jet engine. Development was being conducted by a consortium led by Rolls-Royce and British Aerospace (BAe).

<span class="mw-page-title-main">Rocket</span> Missile or vehicle which flies using thrust from a reaction gas engine

A rocket is a spacecraft, aircraft, vehicle or projectile that obtains thrust from a rocket engine. Rocket engine exhaust is formed entirely from propellant carried within the rocket. Rocket engines work by action and reaction and push rockets forward simply by expelling their exhaust in the opposite direction at high speed, and can therefore work in the vacuum of space.

<span class="mw-page-title-main">Single-stage-to-orbit</span> Launch system that only uses one rocket stage

A single-stage-to-orbit vehicle reaches orbit from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term usually, but not exclusively, refers to reusable vehicles. To date, no Earth-launched SSTO launch vehicles have ever been flown; orbital launches from Earth have been performed by either fully or partially expendable multi-stage rockets.

Payload is the object or the entity which is being carried by an aircraft or launch vehicle. Sometimes payload also refers to the carrying capacity of an aircraft or launch vehicle, usually measured in terms of weight. Depending on the nature of the flight or mission, the payload of a vehicle may include cargo, passengers, flight crew, munitions, scientific instruments or experiments, or other equipment. Extra fuel, when optionally carried, is also considered part of the payload.

<span class="mw-page-title-main">Polar Satellite Launch Vehicle</span> Expendable system for launching satellites, developed by the Indian Space Research Organisation

The Polar Satellite Launch Vehicle (PSLV) is an expendable medium-lift launch vehicle designed and operated by the Indian Space Research Organisation (ISRO). It was developed to allow India to launch its Indian Remote Sensing (IRS) satellites into sun-synchronous orbits, a service that was, until the advent of the PSLV in 1993, was commercially available only from Russia. PSLV can also launch small size satellites into Geostationary Transfer Orbit (GTO).

<span class="mw-page-title-main">Propellant mass fraction</span>

In aerospace engineering, the propellant mass fraction is the portion of a vehicle's mass which does not reach the destination, usually used as a measure of the vehicle's performance. In other words, the propellant mass fraction is the ratio between the propellant mass and the initial mass of the vehicle. In a spacecraft, the destination is usually an orbit, while for aircraft it is their landing location. A higher mass fraction represents less weight in a design. Another related measure is the payload fraction, which is the fraction of initial weight that is payload. It can be applied to a vehicle, a stage of a vehicle or to a rocket propulsion system.

<span class="mw-page-title-main">Reusable launch vehicle</span> Vehicles that can go to space and recover

A reusable launch vehicle have parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.

<span class="mw-page-title-main">Skylon (spacecraft)</span> Single-stage-to-orbit spaceplane

Skylon is a series of concept designs for a reusable single-stage-to-orbit spaceplane by the British company Reaction Engines Limited (Reaction), using SABRE, a combined-cycle, air-breathing rocket propulsion system. The vehicle design is for a hydrogen-fuelled aircraft that would take off from a specially built reinforced runway, and accelerate to Mach 5.4 at 26 kilometres (85,000 ft) altitude using the atmosphere's oxygen before switching the engines to use the internal liquid oxygen (LOX) supply to take it into orbit. It could carry 17 tonnes (37,000 lb) of cargo to an equatorial low Earth orbit (LEO); up to 11 tonnes (24,000 lb) to the International Space Station, almost 45% more than the capacity of the European Space Agency's Automated Transfer Vehicle; or 7.3 tonnes (16,000 lb) to Geosynchronous Transfer Orbit (GTO), over 24% more than SpaceX Falcon 9 launch vehicle in reusable mode. The relatively light vehicle would then re-enter the atmosphere and land on a runway, being protected from the conditions of re-entry by a ceramic composite skin. When on the ground, it would undergo inspection and necessary maintenance, with a turnaround time of approximately two days, and be able to complete at least 200 orbital flights per vehicle.

<span class="mw-page-title-main">McDonnell Douglas DC-X</span> Prototype single-stage-to-orbit rocket developed & flown between 1991-1996

The DC-X, short for Delta Clipper or Delta Clipper Experimental, was an uncrewed prototype of a reusable single-stage-to-orbit launch vehicle built by McDonnell Douglas in conjunction with the United States Department of Defense's Strategic Defense Initiative Organization (SDIO) from 1991 to 1993. Starting 1994 until 1995, testing continued through funding of the US civil space agency NASA. In 1996, the DC-X technology was completely transferred to NASA, which upgraded the design for improved performance to create the DC-XA.

<span class="mw-page-title-main">SpaceX Merlin</span> Rocket engine in SpaceX Falcon launch vehicles

Merlin is a family of rocket engines developed by SpaceX for use on its Falcon 1, Falcon 9 and Falcon Heavy launch vehicles. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

Launch vehicle Rocket used to carry an object into space

A launch vehicle or carrier rocket can carry a payload from the surface to outer space, such as spacecraft and satellites. They are often operated with extensive infrastructure such as launch pads, vehicle assembly, fueling systems, range safety, etc. The difficulties of spaceflight demand launch vehicles to be engineered with very advanced aerodynamics and technologies – a big contributor to the vehicle's expensive operating cost.

Pioneer Rocketplane was an aerospace design and development company intent on developing affordable manned space flight. The company is most famous for advocating a horizontal takeoff, turbo-jet and rocket propelled, aerial-refueled, rocket plane concept called the Pathfinder. The company still exists, but is no longer in operation. Pioneer's intellectual property is now owned by Rocketplane Limited, Inc., however Rocketplane Limited does not employ any of the principals of Pioneer Rocketplane.

<span class="mw-page-title-main">Blackstar (spacecraft)</span> The reported codename of a secret U.S. orbital spaceplane system

Blackstar is the reported codename of a secret United States orbital spaceplane system. The possible existence of the Blackstar program was reported in March 2006 by Aviation Week & Space Technology magazine; the magazine reported that the program had been underway since at least the early 1990s, and that the impetus for Blackstar was to allow the United States government to retain orbital reconnaissance capabilities jeopardized following the 1986 Challenger disaster. The article also said that the United States Air Force's Space Command was unaware of Blackstar, suggesting it was operated by an intelligence agency such as the National Reconnaissance Office.

Kistler K-1 Rocket type

The Kistler K-1 was a two-stage, fully reusable launch vehicle design created by Kistler Aerospace. It was to accommodate a wide range of missions, including payload delivery to low Earth orbit (LEO), payload delivery to high-energy orbits with a K-1 Active Dispenser, technology demonstration flights, microgravity missions, and commercial cargo resupply, recovery, and reboost services for the International Space Station (ISS).

Aeroshell Protects a spacecraft during atmospheric reentry

An aeroshell is a rigid heat-shielded shell that helps decelerate and protects a spacecraft vehicle from pressure, heat, and possible debris created by drag during atmospheric entry. Its main components consist of a heat shield and a back shell. The heat shield absorbs heat caused by air compression in front of the spacecraft during its atmospheric entry. The back shell carries the load being delivered, along with important components such as a parachute, rocket engines, and monitoring electronics like an inertial measurement unit that monitors the orientation of the shell during parachute-slowed descent.

Air-launch-to-orbit Method of launching rockets at altitude from a conventional horizontal-takeoff aircraft

Air launch to orbit is the method of launching rockets at altitude from a conventional horizontal-takeoff aircraft, to carry satellites to low Earth orbit. It is a follow-on development of air launches of experimental aircraft that began in the late 1940s. This method, when employed for orbital payload insertion, presents significant advantages over conventional vertical rocket launches, particularly because of the reduced mass, thrust and cost of the rocket.

Douglas Aircraft's SASSTO, short for "Saturn Application Single Stage to Orbit", was a single-stage-to-orbit (SSTO) reusable launch system designed by Philip Bono's team in 1967. SASSTO was a study in minimalist designs, a launcher with the specific intent of repeatedly placing a Gemini capsule in orbit for the lowest possible cost. The SASSTO booster was based on the layout of the S-IVB upper stage from the Saturn family, modified with a plug nozzle. Although the SASSTO design was never followed up at Douglas, it is widely referred to in newer studies for SSTO launchers, notably the MBB "Beta" design, which was largely an updated version of SASSTO.

<span class="mw-page-title-main">Falcon 9 Full Thrust</span> Third major version of the SpaceX Falcon 9 orbital launch vehicle

Falcon 9 Full Thrust is a partially reusable medium-lift launch vehicle, designed and manufactured by SpaceX. Designed in 2014–2015, Falcon 9 Full Thrust began launch operations in December 2015. As of 11 September 2022, Falcon 9 Full Thrust had performed 155 launches without any failures. Based on the Lewis point estimate of reliability, this rocket is the most reliable orbital launch vehicle currently in operation.

Starship is a fully-reusable, super-heavy-lift launch vehicle being developed by SpaceX, an American aerospace manufacturer. It is the tallest and most powerful launch vehicle ever built. Starship is a two-stage-to-orbit launch vehicle, consisting of the Super Heavy booster stage and the Starship second stage or spacecraft. The spacecraft is planned to have four main variants: cargo, crew, propellant tanker, and lunar lander.

References

  1. Past US stealth aircraft projects Archived 2008-09-22 at the Wayback Machine ", Retrieved 24 April 2010
  2. "GLOBSEC on Science Dawn", GlobalSecurity.org, Retrieved 24 April 2010
  3. Aviation Week & Space Technology on October 11, 1993.
  4. 1 2 "X-40 Space Maneuver Vehicle - Integrated Tech Testbed ", Federation of American Scientists , Retrieved 24 April 2010