Self-condensation

Last updated

In organic chemistry, self-condensation is an organic reaction in which a chemical compound containing a carbonyl group (C=O) acts both as the electrophile and the nucleophile in an aldol condensation. It is also called a symmetrical aldol condensation as opposed to a mixed aldol condensation in which the electrophile and nucleophile are different species.

Contents

For example, two molecules of acetone condense to a single compound mesityl oxide in the presence of an ion-exchange resin: [1]

2 CH3COCH3 → (CH3)2C=CH(CO)CH3 + H2O

For synthetic uses, this is generally an undesirable, but spontaneous and favored side-reaction of mixed aldol condensation, and special precautions are needed to prevent it.

Preventing self-condensation

In many cases, self-condensation is an unwanted side-reaction. Therefore, chemists have adopted many ways to prevent this from occurring when performing a crossed aldol reaction.

The use of a more reactive electrophile, and a non-enolizable partner

If acetophenone and benzaldehyde are put together in the presence of aqueous NaOH, only one product is formed:

Benzaldehyde acetophenone condensation.svg

This occurs because benzaldehyde lacks any enolizable protons, so it cannot form an enolate, and the benzaldehyde is much more electrophilic than any unenolized acetophenone in solution. Therefore, the enolate formed from acetophenone will always preferentially attack the benzaldehyde over another molecule of acetophenone. [2]

Making enolate ion quantitatively

When nitromethane and acetophenone are combined using aqueous NaOH, only one product is formed:

Acetophenone nitromethane condensation.svg

Here, the acetophenone never gets a chance to condense with itself, because the nitromethane is so much more acidic that the nitro "enolate" is made quantitatively. There is no known published procedure for the condensation between Acetophenone and Nitromethane.

A similar process can also be used to prevent self-condensation between two ketones. In this case, however, the base used needs to be more powerful. A common base used is Lithium diisopropyl amide (LDA). Here it is used in order to perform the crossed condensation between acetone and cyclohexanone. [3]

Cyclohexanone and acetone.png

The deprotonation step using LDA is so fast that the enolate formed never gets a chance to react with any unreacted molecules of cyclohexanone. Then the enolate reacts quickly with acetone.

Silyl enol ether formation

Using LDA will not work when attempting to make enolate ion from aldehydes. They are so reactive that self-condensation will occur. One way to get around this is to turn the aldehyde into a silyl enol ether using trimethylsilyl chloride and a base, such as triethylamine, and then perform the aldol condensation. Here this tactic is employed in the condensation of acetaldehyde and benzaldehyde. A Lewis acid, such as TiCl4, must be used in order to promote condensation. [4]

Ethanal and benzaldehyde silyl enol ether condensation.svg

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

The aldol reaction is a reaction in organic chemistry that combines two carbonyl compounds to form a new β-hydroxy carbonyl compound. Its simplest form might involve the nucleophilic addition of an enolized ketone to another:

<span class="mw-page-title-main">Enamine</span> Class of chemical compounds

An enamine is an unsaturated compound derived by the condensation of an aldehyde or ketone with a secondary amine. Enamines are versatile intermediates.

<span class="mw-page-title-main">Aldol condensation</span> Type of chemical reaction

An aldol condensation is a condensation reaction in organic chemistry in which two carbonyl moieties react to form a β-hydroxyaldehyde or β-hydroxyketone, and this is then followed by dehydration to give a conjugated enone.

<span class="mw-page-title-main">Michael addition reaction</span> Reaction in organic chemistry

In organic chemistry, the Michael reaction or Michael 1,4 addition is a reaction between a Michael donor and a Michael acceptor to produce a Michael adduct by creating a carbon-carbon bond at the acceptor's β-carbon. It belongs to the larger class of conjugate additions and is widely used for the mild formation of carbon-carbon bonds.

The Robinson annulation is a chemical reaction used in organic chemistry for ring formation. It was discovered by Robert Robinson in 1935 as a method to create a six membered ring by forming three new carbon–carbon bonds. The method uses a ketone and a methyl vinyl ketone to form an α,β-unsaturated ketone in a cyclohexane ring by a Michael addition followed by an aldol condensation. This procedure is one of the key methods to form fused ring systems.

<span class="mw-page-title-main">Enolate</span> Organic anion formed by deprotonating a carbonyl (>C=O) compound

In organic chemistry, enolates are organic anions derived from the deprotonation of carbonyl compounds. Rarely isolated, they are widely used as reagents in the synthesis of organic compounds.

In organic chemistry, the Knoevenagel condensation reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation.

In organic chemistry, umpolung or polarity inversion is the chemical modification of a functional group with the aim of the reversal of polarity of that group. This modification allows secondary reactions of this functional group that would otherwise not be possible. The concept was introduced by D. Seebach and E.J. Corey. Polarity analysis during retrosynthetic analysis tells a chemist when umpolung tactics are required to synthesize a target molecule.

In organosilicon chemistry, silyl enol ethers are a class of organic compounds that share the common functional group R3Si−O−CR=CR2, composed of an enolate bonded to a silane through its oxygen end and an ethene group as its carbon end. They are important intermediates in organic synthesis.

<span class="mw-page-title-main">Benzylideneacetone</span> Chemical compound

Benzylideneacetone is the organic compound described by the formula C6H5CH=CHC(O)CH3. Although both cis- and trans-isomers are possible for the α,β-unsaturated ketone, only the trans isomer is observed. Its original preparation demonstrated the scope of condensation reactions to construct new, complex organic compounds. Benzylideneacetone is used as a flavouring ingredient in food and perfumes.

<span class="mw-page-title-main">Mukaiyama aldol addition</span> Organic reaction between a silyl enol ether and an aldehyde or formate

In organic chemistry, the Mukaiyama aldol addition is an organic reaction and a type of aldol reaction between a silyl enol ether and an aldehyde or formate. The reaction was discovered by Teruaki Mukaiyama in 1973. His choice of reactants allows for a crossed aldol reaction between an aldehyde and a ketone, or a different aldehyde without self-condensation of the aldehyde. For this reason the reaction is used extensively in organic synthesis.

In organic chemistry, aldol reactions are acid- or base-catalyzed reactions of aldehydes or ketones.

In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation. This reaction is named after two of its pioneering investigators Rainer Ludwig Claisen and J. Gustav Schmidt, who independently published on this topic in 1880 and 1881. An example is the synthesis of dibenzylideneacetone ( -1,5-diphenylpenta-1,4-dien-3-one).

<span class="mw-page-title-main">Flippin–Lodge angle</span>

The Flippin–Lodge angle is one of two angles used by organic and biological chemists studying the relationship between a molecule's chemical structure and ways that it reacts, for reactions involving "attack" of an electron-rich reacting species, the nucleophile, on an electron-poor reacting species, the electrophile. Specifically, the angles—the Bürgi–Dunitz, , and the Flippin–Lodge, —describe the "trajectory" or "angle of attack" of the nucleophile as it approaches the electrophile, in particular when the latter is planar in shape. This is called a nucleophilic addition reaction and it plays a central role in the biological chemistry taking place in many biosyntheses in nature, and is a central "tool" in the reaction toolkit of modern organic chemistry, e.g., to construct new molecules such as pharmaceuticals. Theory and use of these angles falls into the areas of synthetic and physical organic chemistry, which deals with chemical structure and reaction mechanism, and within a sub-specialty called structure correlation.

<span class="mw-page-title-main">Nitrilium</span>

A nitrilium ion is a nitrile that has been protonated, [RCNH]+, or alkylated, [RCNR′]+.

In organic chemistry, the Baylis–Hillman, Morita–Baylis–Hillman, or MBH reaction is a carbon-carbon bond-forming reaction between an activated alkene and a carbon electrophile in the presence of a nucleophilic catalyst, such as a tertiary amine or phosphine. The product is densely functionalized, joining the alkene at the α-position to a reduced form of the electrophile.

<span class="mw-page-title-main">Carbonyl α-substitution reaction</span> Chemical reaction

Carbonyl α-substitution reactions occur at the position next to the carbonyl group, the α-position, and involves the substitution of an α-hydrogen by an electrophile through either an enol or enolate ion intermediate.

<span class="mw-page-title-main">Teruaki Mukaiyama</span> Japanese chemist (1927–2018)

Teruaki Mukaiyama was a Japanese organic chemist. One of the most prolific chemists of the 20th century in the field of organic synthesis, Mukaiyama helped establish the field of organic chemistry in Japan after World War II.

References

  1. Ketone Condensations Using Sulfonic Acid Ion Exchange Resin N. Lorette; J. Org. Chem.; 1957; 22(3); 346-347.
  2. Clayden, Jonathan. Organic Chemistry. Oxford University Press, Oxford, New York, pp. 689-720. ISBN   978-0-19-850346-0
  3. Clayden, Jonathan. Organic Chemistry. Oxford University Press, Oxford, New York, pp. 689-720. ISBN   978-0-19-850346-0
  4. Clayden, Jonathan. Organic Chemistry. Oxford University Press, Oxford, New York, pp. 689-720. ISBN   978-0-19-850346-0