Set theory of the real line

Last updated

Set theory of the real line is an area of mathematics concerned with the application of set theory to aspects of the real numbers.

For example, one knows that all countable sets of reals are null, i.e. have Lebesgue measure 0; one might therefore ask the least possible size of a set which is not Lebesgue null. This invariant is called the uniformity of the ideal of null sets, denoted . There are many such invariants associated with this and other ideals, e.g. the ideal of meagre sets, plus more which do not have a characterisation in terms of ideals. If the continuum hypothesis (CH) holds, then all such invariants are equal to , the least uncountable cardinal. For example, we know is uncountable, but being the size of some set of reals under CH it can be at most .

On the other hand, if one assumes Martin's Axiom (MA) all common invariants are "big", that is equal to , the cardinality of the continuum. Martin's Axiom is consistent with . In fact one should view Martin's Axiom as a forcing axiom that negates the need to do specific forcings of a certain class (those satisfying the ccc, since the consistency of MA with large continuum is proved by doing all such forcings (up to a certain size shown to be sufficient). Each invariant can be made large by some ccc forcing, thus each is big given MA.

If one restricts to specific forcings, some invariants will become big while others remain small. Analysing these effects is the major work of the area, seeking to determine which inequalities between invariants are provable and which are inconsistent with ZFC. The inequalities among the ideals of measure (null sets) and category (meagre sets) are captured in Cichon's diagram. Seventeen models (forcing constructions) were produced during the 1980s, starting with work of Arnold Miller, to demonstrate that no other inequalities are provable. These are analysed in detail in the book by Tomek Bartoszynski and Haim Judah, two of the eminent workers in the field.

One curious result is that if you can cover the real line with meagre sets (where ) then ; conversely if you can cover the real line with null sets then the least non-meagre set has size at least ; both of these results follow from the existence of a decomposition of as the union of a meagre set and a null set.

One of the last great unsolved problems of the area was the consistency of

proved in 1998 by Saharon Shelah.

See also

Related Research Articles

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:

"There is no set whose cardinality is strictly between that of the integers and the real numbers."

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

<span class="mw-page-title-main">Cardinality</span> Definition of the number of elements in a set

In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set contains 3 elements, and therefore has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set may also be called its size, when no confusion with other notions of size is possible.

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers.

Freiling's axiom of symmetry is a set-theoretic axiom proposed by Chris Freiling. It is based on intuition of Stuart Davidson but the mathematics behind it goes back to Wacław Sierpiński.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the Hebrew letter beth. The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by or

<span class="mw-page-title-main">Robert M. Solovay</span> American mathematician (born 1938)

Robert Martin Solovay is an American mathematician working in set theory.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In set theory, Cichoń's diagram or Cichon's diagram is a table of 10 infinite cardinal numbers related to the set theory of the reals displaying the provable relations between these cardinal characteristics of the continuum. All these cardinals are greater than or equal to , the smallest uncountable cardinal, and they are bounded above by , the cardinality of the continuum. Four cardinals describe properties of the ideal of sets of measure zero; four more describe the corresponding properties of the ideal of meager sets.

In set theory, Ω-logic is an infinitary logic and deductive system proposed by W. Hugh Woodin as part of an attempt to generalize the theory of determinacy of pointclasses to cover the structure . Just as the axiom of projective determinacy yields a canonical theory of , he sought to find axioms that would give a canonical theory for the larger structure. The theory he developed involves a controversial argument that the continuum hypothesis is false.

In mathematics, a cardinal function is a function that returns cardinal numbers.

In mathematics, infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. Some of the things studied include continuous graphs and trees, extensions of Ramsey's theorem, and Martin's axiom. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.

In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . Georg Cantor proved that the cardinality is larger than the smallest infinity, namely, . He also proved that is equal to , the cardinality of the power set of the natural numbers.

In the mathematical discipline of set theory, a cardinal characteristic of the continuum is an infinite cardinal number that may consistently lie strictly between , and the cardinality of the continuum, that is, the cardinality of the set of all real numbers. The latter cardinal is denoted or . A variety of such cardinal characteristics arise naturally, and much work has been done in determining what relations between them are provable, and constructing models of set theory for various consistent configurations of them.

References