Shading coefficient (SC) is a measure of thermal performance of a glass unit (panel or window) in a building.
Glass is a non-crystalline, amorphous solid that is most often transparent and has widespread practical, technological, and decorative uses in, for example, window panes, tableware, optics and optoelectronics. The most familiar, and historically the oldest, types of manufactured glass are "silicate glasses" based on the chemical compound silica (silicon dioxide, or quartz), the primary constituent of sand. The term glass, in popular usage, is often used to refer only to this type of material, which is familiar from use as window glass and in glass bottles. Of the many silica-based glasses that exist, ordinary glazing and container glass is formed from a specific type called soda-lime glass, composed of approximately 75% silicon dioxide (SiO2), sodium oxide (Na2O) from sodium carbonate (Na2CO3), calcium oxide (CaO), also called lime, and several minor additives.
A window is an opening in a wall, door, roof or vehicle that allows the passage of light, sound, and sometimes air. Modern windows are usually glazed or covered in some other transparent or translucent material, a sash set in a frame in the opening; the sash and frame are also referred to as a window. Many glazed windows may be opened, to allow ventilation, or closed, to exclude inclement weather. Windows often have a latch or similar mechanism to lock the window shut or to hold it open by various amounts.
A building, or edifice, is a structure with a roof and walls standing more or less permanently in one place, such as a house or factory. Buildings come in a variety of sizes, shapes, and functions, and have been adapted throughout history for a wide number of factors, from building materials available, to weather conditions, land prices, ground conditions, specific uses, and aesthetic reasons. To better understand the term building compare the list of nonbuilding structures.
It is the ratio of solar gain (due to direct sunlight) passing through a glass unit to the solar energy which passes through 3mm Clear Float Glass [1] . It is an indicator of how well the glass is thermally insulating (shading) the interior when there is direct sunlight on the panel or window.
Solar gain is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.
Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.
[./Https://Shady%20Shadow.comhttps://Shady Shadow.com]
The shading coefficient depends on the color of glass and degree of reflectivity. It also depends on the type of reflective metal oxides for the case of reflective glass. Sputter-coated reflective and/or sputter-coated low-emissivity glasses tend to have lower SC compared to the same pyrolitically-coated reflective and/or low-emissivity glass.
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression; it is usually a number, but may be any expression. In the latter case, the variables appearing in the coefficients are often called parameters, and must be clearly distinguished from the other variables.
Color, or colour, is the characteristic of human visual perception described through color categories, with names such as red, orange, yellow, green, blue, or purple. This perception of color derives from the stimulation of cone cells in the human eye by electromagnetic radiation in the visible spectrum. Color categories and physical specifications of color are associated with objects through the wavelength of the light that is reflected from them. This reflection is governed by the object's physical properties such as light absorption, emission spectra, etc.
The value ranges between 1.00 to 0.00, but experiments[ which? ] show that the value of the SC is typically between 0.98~0.10. The lower the rating, the less solar heat is transmitted through the glass, and the greater its shading ability.
Solar properties play a significant role in the selection of glass, especially in regions or cardinal directions with high solar exposure. It becomes less significant in situations where direct sunlight is not a major factor (e.g., windows completely shaded by overhangs).
Window design methods have moved away from Shading Coefficient to Solar Heat Gain Coefficient (SHGC), which is defined as the fraction of incident solar radiation that actually enters a building through the entire window assembly as heat gain (not just the glass portion). Though shading coefficient is still mentioned in manufacturer product literature and some industry computer software [2] , it is no longer mentioned as an option in the handbook widely used by building energy engineers [3] or model building codes [4] . Industry technical experts recognized the limitations of SC and pushed towards SHGC before the early 1990s [5] .
A conversion from SC to SHGC is not necessarily straightforward, as they each take into account different heat transfer mechanisms and paths (window assembly vs. glass-only). To perform an approximate conversion from SC to SHGC, multiply the SC value by 0.87.
In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.
Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming/switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.
Radiative cooling is the process by which a body loses heat by thermal radiation.
Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.
Roughly speaking in the context of building and construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions.
Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy or electrical energy for use in industry, and in the residential and commercial sectors.
A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.
A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar air heaters.
The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation and it may include both visible radiation (light) and infrared radiation, which is not visible to human eyes. The thermal radiation from very hot objects is easily visible to the eye. Quantitatively, emissivity is the ratio of the thermal radiation from a surface to the radiation from an ideal black surface at the same temperature as given by the Stefan–Boltzmann law. The ratio varies from 0 to 1. The surface of a perfect black body emits thermal radiation at the rate of approximately 448 watts per square metre at room temperature ; all real objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.
A solar mirror contains a substrate with a reflective layer for reflecting the solar energy, and in most cases an interference layer. This may be a planar mirror or parabolic arrays of solar mirrors used to achieve a substantially concentrated reflection factor for solar energy systems.
Low emissivity refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials. In common use, especially building applications, the temperature range of approximately -40 to +80 degrees Celsius is the focus, but in aerospace and industrial process engineering, much broader ranges are of practical concern.
Reflective surfaces can deliver high solar reflectance and high thermal emittance. Reflective surfaces are a form of geoengineering.
Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building. Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components, rather than mechanical systems to dissipate heat. Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks. Examples of on-site heat sinks are the upper atmosphere, the outdoor air (wind), and the earth/soil.
Building insulation is any object in a building used as insulation for any purpose. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.
A skylight is a light-transmitting structure that forms all or part of the roof space of a building for daylighting purposes.
Radiant heating and cooling systems are temperature-controlled surfaces that exchange heat with their surrounding environment through convection and radiation. By definition, in radiant heating and cooling systems, thermal radiation covers more than 50% of heat exchange within the space. Hydronic radiant heating and cooling systems are water-based. It refers to panels or embedded building components. Other types include air-based and electrical systems. Important portions of building surfaces are usually required for the radiant exchange.
Quadruple glazing is a type of insulated glazing comprising four glass panes, commonly equipped with low emissivity coating and insulating gas in the cavities between the glass panes. Quadruple glazing is a member of multipane (multilayer) glazing where complex engineering is common. Multipane glazing with up to six panes is commercially available. The purpose of multipane glazing is to further reduce heat transfer through the glazed surfaces. This might be required to achieve the desired energy efficiency level in the arctic regions, or to allow for higher glazing ratios in curtain wall without increasing winter heat loss. Quadruple glazing allows building glazing elements to be designed free of modulated external sun-shading as variable solar gain no longer provides energy efficiency improvement at low thermal transmittance achievable with quadruple and other multipane glazing. There are numerous buildings built with ageing triple glazing in Nordic countries that are in need of renovation where multipane glazing is a solution of choice.