Shearography

Last updated
A vacuum shearography hood and data display unit is applied to a composite structure to check for defects. An indication of a possible defect appears as the ripple pattern on the bottom right of the data screen. Vacuum Shearography Usage.jpg
A vacuum shearography hood and data display unit is applied to a composite structure to check for defects. An indication of a possible defect appears as the ripple pattern on the bottom right of the data screen.

Shearography or Speckle pattern shearing interferometry is a measuring and testing method similar to holographic interferometry. It uses coherent light or coherent soundwaves [1] to provide information about the quality of different materials in nondestructive testing, strain measurement, and vibration analysis. Shearography is extensively used in production and development in aerospace, [2] wind rotor blades, automotive, and materials research areas. [3] Advantages of shearography are the large area testing capabilities (up to 1 m² per minute), non-contact properties, its relative insensitivity to environmental disturbances, and its good performance on honeycomb materials, which is a big challenge for traditional nondestructive testing methods.

Contents

Shearing function

When a surface area is illuminated with a highly coherent laser light, a stochastical interference pattern is created. This interference pattern is called a speckle, and is projected on a rigid camera's CCD chip. Analogous with Electronic speckle pattern interferometry (ESPI), to obtain results from the speckle we need to compare it with a known reference light. Shearography uses the test object itself as the known reference; it shears the image so a double image is created. The superposition of the two images, a shear image, represents the surface of the test object at this unloaded state. This makes the method much less sensitive to external vibrations and noise. By applying a small load, the material will deform. A nonuniform material quality will generate a nonuniform movement of the surface of the test object. A new shearing image is recorded at the loaded state and is compared with the sheared image before load. If a flaw is present, it will be seen. [4]

Phase-shift technology

To increase the sensitivity of the measurement method, a real-time phase shift process is used in the sensor. This contains a stepping mirror that shifts the reference beam, which is then processed with a best fit-algorithm and presents the information in real time.

Applications

The main applications are in composite nondestructive testing, where typical flaws are: Disbonds, Delaminations, Wrinkles, Porosity, Foreign objects, and Impact damages.

Industries where Shearography is used are: Aerospace, Space, Boats, Wind power, Automotive, Tires, and Art conservation. [5]

Inspection standards

The methodology of shearography is standardized by ASTM International:

The following NDT personnel certification documents contain references to shearography:

Related Research Articles

Interferometry Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, remote sensing, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Nondestructive testing Evaluating the properties of a material, component, or system without causing damage

Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.

Optical coherence tomography Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media. It is used for medical imaging and industrial nondestructive testing (NDT). Optical coherence tomography is based on low-coherence interferometry, typically employing near-infrared light. The use of relatively long wavelength light allows it to penetrate into the scattering medium. Confocal microscopy, another optical technique, typically penetrates less deeply into the sample but with higher resolution.

Laser-ultrasonics uses lasers to generate and detect ultrasonic waves. It is a non-contact technique used to measure materials thickness, detect flaws and carry out materials characterization. The basic components of a laser-ultrasonic system are a generation laser, a detection laser and a detector.

Profilometer

A profilometer is a measuring instrument used to measure a surface's profile, in order to quantify its roughness. Critical dimensions as step, curvature, flatness are computed from the surface topography.

Eddy-current testing is one of many electromagnetic testing methods used in nondestructive testing (NDT) making use of electromagnetic induction to detect and characterize surface and sub-surface flaws in conductive materials.

Ultrasonic testing Non-destructive material testing using ultrasonic waves

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.

Holographic interferometry (HI) is a technique which enables static and dynamic displacements of objects with optically rough surfaces to be measured to optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Moiré deflectometry produces result that appears similar to an interferometry technique, in which the object to be tested is mounted in the course of a collimated beam followed by a pair of transmission gratings placed at a distance from each other. The resulting fringe pattern, i.e., the moiré deflectogram, is a map of ray deflections corresponding to the optical properties of the inspected object.

Thermographic inspection refers to the nondestructive testing (NDT) of parts, materials or systems through the imaging of the temperature fields, gradients and/or patterns ("thermograms") at the object's surface. It is distinguished from medical thermography by the subjects being examined: thermographic inspection generally examines inanimate objects, while medical thermography generally examines living organisms. Generally, thermographic inspection is performed using an infrared sensor.

Electronic speckle pattern interferometry

Electronic speckle pattern interferometry (ESPI), also known as TV holography, is a technique that uses laser light, together with video detection, recording and processing, to visualise static and dynamic displacements of components with optically rough surfaces. The visualisation is in the form of fringes on the image, where each fringe normally represents a displacement of half a wavelength of the light used.

Laser Doppler vibrometer

A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extracted from the Doppler shift of the reflected laser beam frequency due to the motion of the surface. The output of an LDV is generally a continuous analog voltage that is directly proportional to the target velocity component along the direction of the laser beam.

Speckle is a granular interference that inherently exists in and degrades the quality of the active radar, synthetic aperture radar (SAR), medical ultrasound and optical coherence tomography images.

Digital holographic microscopy

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

Novacam Technologies Inc. specializes in designing and manufacturing advanced metrology and imaging systems for industrial and bio-medical applications. Novacam's fiber-based optical profilometers and Optical Coherence Tomography (OCT) systems are based on low coherence interferometry. The fiber-based nature of Novacam's detector probes is unique in the optical metrology industry.

Terahertz nondestructive evaluation pertains to devices, and techniques of analysis occurring in the terahertz domain of electromagnetic radiation. These devices and techniques evaluate the properties of a material, component or system without causing damage.

A common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer. A common-path interferometer is generally more robust to environmental vibrations than a "double-path interferometer" such as the Michelson interferometer or the Mach–Zehnder interferometer. Although travelling along the same path, the reference and sample beams may travel along opposite directions, or they may travel along the same direction but with the same or different polarization.

Holographic interference microscopy (HIM) is holographic interferometry applied for microscopy for visualization of phase micro-objects. Phase micro-objects are invisible because they do not change intensity of light, they insert only invisible phase shifts. The holographic interference microscopy distinguishes itself from other microscopy methods by using a hologram and the interference for converting invisible phase shifts into intensity changes.

Active thermography is an advanced nondestructive testing procedure, which uses a thermography measurement of a tested material thermal response after its external excitation. This principle can be used also for non-contact infrared non-destructive testing (IRNDT) of materials.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

References

  1. Ng, Jeanette. "Gadget holds key to safer buildings" The Standard September 1, 2005 Archived June 29, 2011, at the Wayback Machine
  2. Garfinkel, Simson L. "Laser Lights Up Flaws" Christian Science Monitor January 20, 1989, p.12
  3. Steinchen, Wolfgang and Lianxiang Yang. Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry SPIE Press: 1 January 2003 ISBN   978-0-8194-4110-2 Archived 13 June 2010 at the Wayback Machine
  4. Hung, YT (1982). "Shearography: A new optical method for strain measurement and nondestructive testing". Optical Engineering. 21 (May/June 1982): 391–395. Bibcode:1982OptEn..21..391H. doi:10.1117/12.7972920.
  5. MK Meybodi, I Dobrev, P Klausmeyer, EJ Harrington, C Furlong, "Investigation of thermomechanical effects of lighting conditions on canvas paintings by laser shearography",SPIE Optical Engineering+ Applications, 2012