Shriek map

Last updated

In category theory, a branch of mathematics, certain unusual functors are denoted and with the exclamation mark used to indicate that they are exceptional in some way. They are thus accordingly sometimes called shriek maps, with "shriek" being slang for an exclamation mark, though other terms are used, depending on context.

Contents

Usage

Shriek notation is used in two senses:

Examples

In algebraic geometry, these arise in image functors for sheaves, particularly Verdier duality, where is a "less usual" functor.

In algebraic topology, these arise particularly in fiber bundles, where they yield maps that have the opposite of the usual variance. They are thus called wrong way maps,Gysin maps, as they originated in the Gysin sequence, or transfer maps. A fiber bundle with base space B, fiber F, and total space E, has, like any other continuous map of topological spaces, a covariant map on homology and a contravariant map on cohomology However, it also has a covariant map on cohomology, corresponding in de Rham cohomology to "integration along the fiber", and a contravariant map on homology, corresponding in de Rham cohomology to "pointwise product with the fiber". The composition of the "wrong way" map with the usual map gives a map from the homology of the base to itself, analogous to a unit/counit of an adjunction; compare also Galois connection.

These can be used in understanding and proving the product property for the Euler characteristic of a fiber bundle. [1]

Notes

  1. Gottlieb, Daniel Henry (1975), "Fibre bundles and the Euler characteristic" (PDF), Journal of Differential Geometry, 10 (1): 39–48, doi: 10.4310/jdg/1214432674

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.

In mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the homotopy category Hotc of pointed connected CW complexes, to the category of sets Set, to be a representable functor.

In noncommutative geometry and related branches of mathematics, cyclic homology and cyclic cohomology are certain (co)homology theories for associative algebras which generalize the de Rham (co)homology of manifolds. These notions were independently introduced by Boris Tsygan (homology) and Alain Connes (cohomology) in the 1980s. These invariants have many interesting relationships with several older branches of mathematics, including de Rham theory, Hochschild (co)homology, group cohomology, and the K-theory. Contributors to the development of the theory include Max Karoubi, Yuri L. Daletskii, Boris Feigin, Jean-Luc Brylinski, Mariusz Wodzicki, Jean-Louis Loday, Victor Nistor, Daniel Quillen, Joachim Cuntz, Ryszard Nest, Ralf Meyer, and Michael Puschnigg.

In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the category of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an abelian category.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space S of a family of algebraic varieties . The fibers of the vector bundle are the de Rham cohomology groups of the fibers of the family. It was introduced by Yuri Manin for curves S and by Alexander Grothendieck in higher dimensions.

In the field of mathematics known as algebraic topology, the Gysin sequence is a long exact sequence which relates the cohomology classes of the base space, the fiber and the total space of a sphere bundle. The Gysin sequence is a useful tool for calculating the cohomology rings given the Euler class of the sphere bundle and vice versa. It was introduced by Gysin, and is generalized by the Serre spectral sequence.

In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

In mathematics, cohomology with compact support refers to certain cohomology theories, usually with some condition requiring that cocycles should have compact support.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

In mathematics, a bivariant theory was introduced by Fulton and MacPherson, in order to put a ring structure on the Chow group of a singular variety, the resulting ring called an operational Chow ring.