Silent synapse

Last updated

In neuroscience, a silent synapse is an excitatory glutamatergic synapse whose postsynaptic membrane contains NMDA-type glutamate receptors but no AMPA-type glutamate receptors. [1] These synapses are named "silent" because normal AMPA receptor-mediated signaling is not present, rendering the synapse inactive under typical conditions. Silent synapses are typically considered to be immature glutamatergic synapses. As the brain matures, the relative number of silent synapses decreases. However, recent research on hippocampal silent synapses shows that while they may indeed be a developmental landmark in the formation of a synapse, that synapses can be "silenced" by activity, even once they have acquired AMPA receptors. Thus, silence may be a state that synapses can visit many times during their lifetimes.

Contents

Synaptic transmission

Silent synapse having NMDA but no AMPA receptors. Silentsynapse.png
Silent synapse having NMDA but no AMPA receptors.

Normal transmission across a glutamatergic synapse relies on the neurotransmitter glutamate, the glutamate-specific AMPA receptor (AMPAR), and calcium ions. Calcium ion entry into the presynaptic terminal causes the presynaptic release of glutamate, which diffuses across the synaptic cleft, binding to glutamate receptors on the postsynaptic membrane. There are four subtypes of glutamate receptors: AMPA receptors (AMPARs) (formerly known as quisqualate receptors), NMDA receptors (NMDARs), kainate receptors, and metabotropic glutamate receptors (mGluRs). Most research has been focused on the AMPARs and the NMDARs. When glutamate binds to AMPARs located on the postsynaptic membrane, they permit a mixed flow of Na+ and K+ to cross the cells membrane, causing a depolarization of the postsynaptic membrane. This localized depolarization is called an excitatory postsynaptic potential (EPSP).

Silent synapses release glutamate as do prototypical glutamatergic synapses, but their postsynaptic membranes contain only NMDA—and possibly mGlu—receptors able to bind glutamate. Though AMPA receptors are not expressed in the postsynaptic membranes of silent synapses, they are stored in vesicles inside the postsynaptic cells, where they cannot detect extracellular glutamate, but can be quickly inserted into the postsynaptic cell membrane in response to a tetanizing stimulus. The NMDAR is functionally similar to AMPAR except for two major differences: NMDARs carry ion currents composed of Na+, K+, but also (unlike most AMPAR) Ca2+; NMDARs also have a site inside their ion channel that binds magnesium ions (Mg2+). This magnesium binding site is located in the pore of the channel, at a place within the electrical field generated by the membrane potential. Normally, current will not flow through the NMDAR channel, even when it has bound glutamate. This is because the ion channel associated with this receptor is plugged by magnesium, acting like a cork in a bottle. However, since the Mg2+ is charged and is bound within the membrane's electric field, depolarization of the membrane potential above threshold can dislodge the magnesium, allowing current flow through the NMDAR channel. This gives the NMDAR the property of being voltage-dependent, in that it requires strong postsynaptic depolarization to allow ion flux.

Characteristics

Membrane depolarization allows the NMDA receptor to respond to glutamate. NMDA Receptor.png
Membrane depolarization allows the NMDA receptor to respond to glutamate.

Silent synapses were proposed as an explanation for differences in quantal content of excitatory postsynaptic currents (EPSCs) mediated by AMPARs and NMDARs in hippocampal neurons. [2] More direct evidence came from experiments where only a few axons were stimulated. The stimulation of a silent synapse does not elicit EPSCs when the postsynaptic cell is clamped at -60 mV. Stimulation of a silent synapse will elicit EPSCs when the postsynaptic cell is depolarized beyond -40 mV. [3] This is because they lack surface AMPAR to pass current at hyperpolarized potentials, but do possess NMDARs that will pass current at more positive potentials (because of relief of magnesium block). Moreover, the EPSCs elicited with depolarized membrane potentials can be completely blocked by D-APV, a selective NMDAR blocker. [4]

Activation

Silent synapses are activated via the insertion of AMPARs into the postsynaptic membrane, a phenomenon commonly called "AMPA receptor trafficking." [5]

When glutamate binds to a strongly-depolarized postsynaptic cell (e.g., during Hebbian LTP), Ca2+ quickly enters and binds to calmodulin. Calmodulin activates calcium/calmodulin-dependent protein kinase II (CaMKII), which among other things acts on AMPAR-containing vesicles near the postsynaptic membrane. CaMKII phosphorylates these AMPARs, which serves as a signal to insert them into the postsynaptic membrane. Once AMPARs are inserted, the synapse is no longer silent; activated synapses no longer require simultaneous pre- and postsynaptic activity in order to elicit EPSPs. After initial activation (Early Long Term Potentiation), if the post synaptic neuron continues to be stimulated, it will adjust to become permanently excitable (Late Long Term Potentiation). It does this by changing its level of AMPA Receptor production which are then inserted into the membrane at the synapse.

Evidence suggests that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, is involved in the maturation of synapses, essentially "awakening" the silent synapses.

Competing Hypotheses

The characterization of silent synapses is an ongoing field of research and there are many things about them that are not yet known. Some of what is currently accepted about the properties of silent synapses may still prove to be incorrect in whole or in part. Some controversies about silent synapses have however, been settled. For example, until recently, there were four competing hypotheses for the mechanisms of synapse silence: [6]

All four of these hypotheses had their adherents, but the first three were largely ruled out as a mechanism for synapse silence by work published before 2008. [7] However, recent experiments have clearly established that silent synapses can be observed at brainstem synapses bearing postsynaptic AMPA receptors. [8] This study favors the glutamate spillover hypothesis by showing that at silent synapses the glutamate concentration is reduced. At least, this study indicates that the popular hypothesis of the postsynaptic silent synapses does not apply in all systems.

Integration with other topics

The Role of Silent Synapses in Long Term Potentiation

Neural Development

AMPA Receptor Trafficking

See also

Related Research Articles

<span class="mw-page-title-main">Long-term potentiation</span> Persistent strengthening of synapses based on recent patterns of activity

In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.

<span class="mw-page-title-main">AMPA receptor</span> Transmembrane protein family

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor is an ionotropic transmembrane receptor for glutamate (iGluR) that mediates fast synaptic transmission in the central nervous system (CNS). It has been traditionally classified as a non-NMDA-type receptor, along with the kainate receptor. Its name is derived from its ability to be activated by the artificial glutamate analog AMPA. The receptor was first named the "quisqualate receptor" by Watkins and colleagues after a naturally occurring agonist quisqualate and was only later given the label "AMPA receptor" after the selective agonist developed by Tage Honore and colleagues at the Royal Danish School of Pharmacy in Copenhagen. The GRIA2-encoded AMPA receptor ligand binding core was the first glutamate receptor ion channel domain to be crystallized.

<span class="mw-page-title-main">NMDA receptor</span> Glutamate receptor and ion channel protein found in nerve cells

The N-methyl-D-aspartatereceptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA and kainate receptors. Depending on its subunit composition, its ligands are glutamate and glycine (or D-serine). However, the binding of the ligands is typically not sufficient to open the channel as it may be blocked by Mg2+ ions which are only removed when the neuron is sufficiently depolarized. Thus, the channel acts as a “coincidence detector” and only once both of these conditions are met, the channel opens and it allows positively charged ions (cations) to flow through the cell membrane. The NMDA receptor is thought to be very important for controlling synaptic plasticity and mediating learning and memory functions.

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.

<span class="mw-page-title-main">Excitatory postsynaptic potential</span> Process causing temporary increase in postsynaptic potential

In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential, caused by the flow of positively charged ions into the postsynaptic cell, is a result of opening ligand-gated ion channels. These are the opposite of inhibitory postsynaptic potentials (IPSPs), which usually result from the flow of negative ions into the cell or positive ions out of the cell. EPSPs can also result from a decrease in outgoing positive charges, while IPSPs are sometimes caused by an increase in positive charge outflow. The flow of ions that causes an EPSP is an excitatory postsynaptic current (EPSC).

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

<span class="mw-page-title-main">Excitatory synapse</span> Sort of synapse

An excitatory synapse is a synapse in which an action potential in a presynaptic neuron increases the probability of an action potential occurring in a postsynaptic cell. Neurons form networks through which nerve impulses travels, each neuron often making numerous connections with other cells of neurons. These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell.

<span class="mw-page-title-main">AP5</span> Chemical compound

AP5 is a chemical compound used as a biochemical tool to study various cellular processes. It is a selective NMDA receptor antagonist that competitively inhibits the ligand (glutamate) binding site of NMDA receptors. AP5 blocks NMDA receptors in micromolar concentrations.

The induction of NMDA receptor-dependent long-term potentiation (LTP) in chemical synapses in the brain occurs via a fairly straightforward mechanism. A substantial and rapid rise in calcium ion concentration inside the postsynaptic cell is most possibly all that is required to induce LTP. But the mechanism of calcium delivery to the postsynaptic cell in inducing LTP is more complicated.

<span class="mw-page-title-main">Kainate receptor</span> Class of ionotropic glutamate receptors

Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug first isolated from the algae Digenea simplex. They have been traditionally classified as a non-NMDA-type receptor, along with the AMPA receptor. KARs are less understood than AMPA and NMDA receptors, the other ionotropic glutamate receptors. Postsynaptic kainate receptors are involved in excitatory neurotransmission. Presynaptic kainate receptors have been implicated in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism.

Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus. These collaterals project to area CA1 of the hippocampus and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop. It is one of the most studied synapses in the world and named after the Hungarian anatomist-neurologist Károly Schaffer.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of individual synapses. However this new form referred to the plasticity of the plasticity itself, thus the term meta-plasticity. The idea is that the synapse's previous history of activity determines its current plasticity. This may play a role in some of the underlying mechanisms thought to be important in memory and learning such as long-term potentiation (LTP), long-term depression (LTD) and so forth. These mechanisms depend on current synaptic "state", as set by ongoing extrinsic influences such as the level of synaptic inhibition, the activity of modulatory afferents such as catecholamines, and the pool of hormones affecting the synapses under study. Recently, it has become clear that the prior history of synaptic activity is an additional variable that influences the synaptic state, and thereby the degree, of LTP or LTD produced by a given experimental protocol. In a sense, then, synaptic plasticity is governed by an activity-dependent plasticity of the synaptic state; such plasticity of synaptic plasticity has been termed metaplasticity. There is little known about metaplasticity, and there is much research currently underway on the subject, despite its difficulty of study, because of its theoretical importance in brain and cognitive science. Most research of this type is done via cultured hippocampus cells or hippocampal slices.

The synaptotropic hypothesis, also called the synaptotrophic hypothesis, is a neurobiological hypothesis of neuronal growth and synapse formation. The hypothesis was first formulated by J.E. Vaughn in 1988, and remains a focus of current research efforts. The synaptotropic hypothesis proposes that input from a presynaptic to a postsynaptic cell eventually can change the course of synapse formation at dendritic and axonal arbors. This synapse formation is required for the development of neuronal structure in the functioning brain.

<span class="mw-page-title-main">Synaptic potential</span> Potential difference across the postsynaptic membrane

Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. In other words, it is the “incoming” signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory. The type of potential produced depends on both the postsynaptic receptor, more specifically the changes in conductance of ion channels in the post synaptic membrane, and the nature of the released neurotransmitter. Excitatory post-synaptic potentials (EPSPs) depolarize the membrane and move the potential closer to the threshold for an action potential to be generated. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory post synaptic potential will most likely be carried out by the neurotransmitters gamma-aminobutyric acid (GABA) and glycine. In order to depolarize a neuron enough to cause an action potential, there must be enough EPSPs to both depolarize the postsynaptic membrane from its resting membrane potential to its threshold and counterbalance the concurrent IPSPs that hyperpolarize the membrane. As an example, consider a neuron with a resting membrane potential of -70 mV (millivolts) and a threshold of -50 mV. It will need to be raised 20 mV in order to pass the threshold and fire an action potential. The neuron will account for all the many incoming excitatory and inhibitory signals via summative neural integration, and if the result is an increase of 20 mV or more, an action potential will occur.

Gliotransmitters are chemicals released from glial cells that facilitate neuronal communication between neurons and other glial cells. They are usually induced from Ca2+ signaling, although recent research has questioned the role of Ca2+ in gliotransmitters and may require a revision of the relevance of gliotransmitters in neuronal signalling in general.

Coincidence detection is a neuronal process in which a neural circuit encodes information by detecting the occurrence of temporally close but spatially distributed input signals. Coincidence detectors influence neuronal information processing by reducing temporal jitter and spontaneous activity, allowing the creation of variable associations between separate neural events in memory. The study of coincidence detectors has been crucial in neuroscience with regards to understanding the formation of computational maps in the brain.

In neuroscience, synaptic scaling is a form of homeostatic plasticity, in which the brain responds to chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to reduce their overall action potential firing rate. Where Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling normalizes all neural synaptic connections by decreasing the strength of each synapse by the same factor, so that the relative synaptic weighting of each synapse is preserved.

Long-term potentiation (LTP), thought to be the cellular basis for learning and memory, involves a specific signal transmission process that underlies synaptic plasticity. Among the many mechanisms responsible for the maintenance of synaptic plasticity is the cadherin–catenin complex. By forming complexes with intracellular catenin proteins, neural cadherins (N-cadherins) serve as a link between synaptic activity and synaptic plasticity, and play important roles in the processes of learning and memory.

<span class="mw-page-title-main">Homosynaptic plasticity</span> Type of synaptic plasticity.

Homosynaptic plasticity is one type of synaptic plasticity. Homosynaptic plasticity is input-specific, meaning changes in synapse strength occur only at post-synaptic targets specifically stimulated by a pre-synaptic target. Therefore, the spread of the signal from the pre-synaptic cell is localized.

References


  1. Purves, Dale (2007). Neuroscience, Fourth Edition. Sinauer Associates. pp. 193–5.
  2. Kullmann DM (May 1994). "Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation". Neuron. 12 (5): 1111–20. doi:10.1016/0896-6273(94)90318-2. PMID   7910467. S2CID   54357872.
  3. Liao D, Hessler NA, Malinow R (June 1995). "Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice". Nature. 375 (6530): 400–4. Bibcode:1995Natur.375..400L. doi:10.1038/375400a0. PMID   7760933. S2CID   4239468.
  4. Isaac JT, Nicoll RA, Malenka RC (August 1995). "Evidence for silent synapses: implications for the expression of LTP". Neuron. 15 (2): 427–34. doi: 10.1016/0896-6273(95)90046-2 . PMID   7646894.
  5. Kerchner GA, Nicoll RA (November 2008). "Silent synapses and the emergence of a postsynaptic mechanism for LTP". Nature Reviews. Neuroscience. 9 (11): 813–25. doi:10.1038/nrn2501. PMC   2819160 . PMID   18854855.
  6. Voronin LL, Cherubini E (May 2004). "'Deaf, mute and whispering' silent synapses: their role in synaptic plasticity". The Journal of Physiology. 557 (Pt 1): 3–12. doi:10.1113/jphysiol.2003.058966. PMC   1665055 . PMID   15034124.
  7. Montgomery JM, Pavlidis P, Madison DV (March 2001). "Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation". Neuron. 29 (3): 691–701. doi: 10.1016/S0896-6273(01)00244-6 . PMID   11301028.
  8. Balland B, Lachamp P, Kessler JP, Tell F (April 2008). "Silent synapses in developing rat nucleus tractus solitarii have AMPA receptors". The Journal of Neuroscience. 28 (18): 4624–34. doi:10.1523/JNEUROSCI.5355-07.2008. PMC   6670440 . PMID   18448639.
  9. Baltaci SB, Mogulkoc R, Baltaci AK (February 2019). "Molecular Mechanisms of Early and Late LTP". Neurochemical Research. 44 (2): 281–296. doi:10.1007/s11064-018-2695-4. PMID   30523578. S2CID   54447044.
  10. Kanold PO, Deng R, Meng X (2019). "The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction". Frontiers in Neuroanatomy. 13: 41. doi: 10.3389/fnana.2019.00041 . PMC   6476909 . PMID   31040772.
  11. Huang X (March 2019). "Silent synapse: A new player in visual cortex critical period plasticity". Pharmacological Research. 141: 586–590. doi:10.1016/j.phrs.2019.01.031. PMID   30659896. S2CID   58546141.
  12. Park M (2018). "AMPA Receptor Trafficking for Postsynaptic Potentiation". Frontiers in Cellular Neuroscience. 12: 361. doi: 10.3389/fncel.2018.00361 . PMC   6193507 . PMID   30364291.
  13. Kneussel M, Hausrat TJ (March 2016). "Postsynaptic Neurotransmitter Receptor Reserve Pools for Synaptic Potentiation". Trends in Neurosciences. 39 (3): 170–182. doi:10.1016/j.tins.2016.01.002. PMID   26833258. S2CID   3514596.