Single Photon Absorptiometry | |
---|---|
Synonyms | no descirbtion |
Reference range | no descirbtion |
Purpose | measurement of bone mineral density |
Test of | bone mineral density |
Based on | Chemical method detection |
Single photon absorptiometry is a measuring method for bone density invented by John R. Cameron and James A. Sorenson in 1963.
Single photon absorptiometry (SPA) was developed in 1963 by Steichen et al. In 1976, it was an important tool for quantifying bone mineralization in infants. The single photon absorption method operates when a certain amount of gamma rays emitted by isotopes, pass through human tissues. There is an exponential function relationship between the number of gamma rays absorbed and the thickness of tissues, and the absorption characteristics of different tissues are different, but the effects of soft tissues and water on gamma rays are the same. Therefore, the influence of soft tissues can be eliminated by a water bath, and the number of gamma rays absorbed by bone tissues can be measured, and then calculated. The bone mineral content (BMC) was calculated. This method is mainly used for bone measurements of limbs and population census with the aid of the water bath. [1] [2]
In 1963, the single photon absorption Assay (SPA) invented by Cameron and Sorenson was the first quantitative analysis method applied to the diagnosis of osteoporosis. This method uses the principle that the absorption of radioactive substances by bone tissue is proportional to the bone mineral content. Iodine or Americium gamma photons are used as a light source to penetrate the forearm. After being absorbed by the bone and soft tissue, NaI (Tl) crystal is used to detect the radioactivity counts parallel to the light source. BMC and BMD are obtained by calculating the density of photon energy emitted and emitted. The location of measurement is usually located at the 1/3 junction of the ulna and distal radius, or at the less soft tissue sites such as calcaneus and hand bone, wrapped in a water bag and placed between light source and detector. BMC (g/cm) can be obtained by synthesizing the measured bone gamma photon absorption energy. BMD (g/cm) can be obtained by dividing BMC by bone width. This method can only measure the bone mineral content of limbs. If the isotope source is changed to X-ray source, that is, single energy X-ray absorptiometer (SXA), the principle and determination method is the same as SPA, but the radiation source is different. [3]
The basic principle of single-photon bone mineral density measuring instrument is to calculate the attenuation degree of single-energy gamma photon beam through bone tissue. The more attenuation degree is, the more absorbed by bone minerals, the more bone mineral content and the higher bone mineral density are. This method is called gamma-ray absorption method, which is also called single-photon absorption method. This method is the most convenient for measuring radius and ulna, and the object of observation is left. The junction point of the middle and lower 1/3 of the radial and ulnar bones is the measuring point. The height and weight parameters of the observed objects are measured routinely before measurement. [4]
Single photon absorption is the earliest method to measure bone mineral density accurately. Its basic principle is that bone mineral density can be obtained by the law of absorption. In this law, the important parameters to be obtained are bone thickness, bone absorption coefficient and radiation intensity (or counting) after bone absorption. The thickness of soft tissue measured by single photon absorption method is the same. Soft tissue does not affect the results of bone tissue measurement. Therefore, the absorption coefficient of a beam of constant energy radiation can be calculated beforehand, and the intensity of radiation (or counting) can be obtained directly in patients' measurement. [5]
In the vertical C-frame, the collimated 125I light source (200 mCi or 74 GBq) and the collimated NaI (TI) scintillation detector-photomultiplier tube are mounted in relative geometric shapes to place the measured body parts between the source and the detector. The source and detector assembly are rigidly connected and driven by a motor to cross the longitudinal axis of the bone. [6]
An early attempt which used conventional X-rays to measure bone mineral density (BMD) uses stepped wedges made of aluminum or ivory phantom as a calibration tool. The bone mineral density was calculated by visually comparing the bone mineral density and the known density at each step of the phantom. The next improvement in the field of bone mineral density is the single-photon absorption (SPA) method invented by Cameron and Sorenson in 1963. [7]
The expensive and potentially dangerous radioactive sources used in SPA and DPA have been replaced by single X-ray absorptiometry (SXA) and dual-energy X-ray absorptiometry (DXA) since the late 1980s. Similar to DPA, the basic principle of DXA is to measure the high and low energy X-ray transmission of stable X-ray sources. The shorter acquisition time, higher accuracy and resolution, and availability exposure can be considered as advantages of using X-rays instead of SPA or DPA. With the increasing popularity of DXA, its application in pediatric research and clinical practice has increased significantly. [7]
At the same time, because SPA is only one energy photon, the actual measurement site is limited to limb bones, especially the distal limb bones, while there is a lot of fat and gas around the trunk bone tissue, so the single photon absorption method is "powerless". At present, the main improvement is to change the isotope source to X-ray source, which cannot only stabilise the voltage, but also improve the measurement accuracy, resolution and speed. As a result, it has also developed from one-dimensional scanning to two-dimensional scanning, from waveform representation of bone mineral density to matrix arrangement of bone mineral density, which more intuitively reflects bone mineral density. [8]
In the past 10 years,[ timeframe? ] measuring forearm bone mass by single photon absorptiometry measurement has become one of the most widely used methods for evaluating cortical bone. There are several different scanners with slight differences in measurement settings. Scanning sites range from mid-axis to distal end, and some scanners measure only one of the forearm bones. Our technique uses six scans over 2 cm in length to minimize repositioning errors and improve accuracy. [6]
Bone thickness can be obtained by measuring the law of absorption. Bone thickness multiplied by the density of hydroxyapatite is bone density (g/cm2). Single photon absorption is the most commonly used method to measure the distal and middle radius of the non-dominant upper extremity, or the distal radius of the radius of the distal 1/10, the ultra-distal radius and calcaneus, hand bone and so on. Because 95% of the cortical bone in the middle and distal radius is located in one third of the radius, and the change of the external diameter of the bone is very small on the longitudinal axis, the measurement accuracy is better. However, the disadvantage is that the measurement results mainly reflect the density of cortical bone and cannot reflect the change of cancellous bone density with faster metabolism, so it cannot be used as a monitoring method for the early change of bone metabolism. [9]
Single photon absorptiometry is the first quantitative analysis method used in the diagnosis of osteoporosis. To evaluate bone quality, bone mineral content (BMC) and bone mineral density (BMD) are important indicators, and bone quality can reflect the health status of normal human bone tissue to a certain extent. Bone loss is systemic, and there is no effective treatment to restore it to normal. Therefore, it is particularly important to adopt a safe, simple and sensitive method for early diagnosis and prevention of osteoporosis.
Generally speaking, the single photon absorption method is simple, portable, economical and practical, and the measuring time is relatively short (1% of the conventional X-ray). It is not affected by local osteosclerosis and proliferation. Therefore, it can be used as a means of large-area bone mineral density sieve, especially in rural areas and communities. [10]
These 125I-based instruments (now known as single photon absorptiometry) have been widely used for many years, and their medical applications have been well established. SPA measurements have been proved that can identify elderly women who are particularly vulnerable to fractures by prospective follow-up studies in Sweden, Indiana, and Hawaii, as confirmed by multicenter trials in the United States, including a recent follow-up of 9,000 elderly women. The Swedish study showed that technology had the same predictive power (younger than other studies) for women aged 50–59. The predictive power extends to hip fractures and males. The US multicenter trial showed that SPA forearm measurements were as good as SPA heel or dual-energy X-ray absorptiometry (DEXA) spine or hip measurements and could be used to predict future overall fractures in elder women. [11]
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum.
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.
Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography and industrial radiography. Similar techniques are used in airport security. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and is projected toward the object. A certain amount of the X-rays or other radiation is absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two dimensional images by this technique is called projectional radiography. In computed tomography an X-ray source and its associated detectors rotate around the subject which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding attenuation of these beams is collated and subjected to computation to generate two dimensional images in three planes which can be further processed to produce a three dimensional image.
Dual-energy X-ray absorptiometry is a means of measuring bone mineral density (BMD) using spectral imaging. Two X-ray beams, with different energy levels, are aimed at the patient's bones. When soft tissue absorption is subtracted out, the bone mineral density (BMD) can be determined from the absorption of each beam by bone. Dual-energy X-ray absorptiometry is the most widely used and most thoroughly studied bone density measurement technology.
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to convert high energy electrons into photons.
In physics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:
A film badge dosimeter or film badge is a personal dosimeter used for monitoring cumulative radiation dose due to ionizing radiation.
Densitometry is the quantitative measurement of optical density in light-sensitive materials, such as photographic paper or photographic film, due to exposure to light.
The body fat percentage (BFP) of a human or other living being is the total mass of fat divided by total body mass, multiplied by 100; body fat includes essential body fat and storage body fat. Essential body fat is necessary to maintain life and reproductive functions. The percentage of essential body fat for women is greater than that for men, due to the demands of childbearing and other hormonal functions. Storage body fat consists of fat accumulation in adipose tissue, part of which protects internal organs in the chest and abdomen. A number of methods are available for determining body fat percentage, such as measurement with calipers or through the use of bioelectrical impedance analysis.
In physical fitness, body composition is used to describe the percentages of fat, bone, water, and muscle in human bodies. Because muscular tissue takes up less space in the body than fat tissue, body composition, as well as weight, determines leanness. Two people of the same gender, height, and body weight may have completely different body types as a consequence of having different body compositions.
Bone density, or bone mineral density, is the amount of bone mineral in bone tissue. The concept is of mass of mineral per volume of bone, although clinically it is measured by proxy according to optical density per square centimetre of bone surface upon imaging. Bone density measurement is used in clinical medicine as an indirect indicator of osteoporosis and fracture risk. It is measured by a procedure called densitometry, often performed in the radiology or nuclear medicine departments of hospitals or clinics. The measurement is painless and non-invasive and involves low radiation exposure. Measurements are most commonly made over the lumbar spine and over the upper part of the hip. The forearm may be scanned if the hip and lumbar spine are not accessible.
Quantitative computed tomography (QCT) is a medical technique that measures bone mineral density (BMD) using a standard X-ray Computed Tomography (CT) scanner with a calibration standard to convert Hounsfield Units (HU) of the CT image to bone mineral density values. Quantitative CT scans are primarily used to evaluate bone mineral density at the lumbar spine and hip.
Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called 'X-ray'. Plain radiography or roentgenography generally refers to projectional radiography. Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.
Digital X-ray radiogrammetry is a method for measuring bone mineral density (BMD). Digital X-ray radiogrammetry is based on the old technique of radiogrammetry. In DXR, the cortical thickness of the three middle metacarpal bones of the hand is measured in a digital X-ray image. Through a geometrical operation the thickness is converted to bone mineral density. The BMD is corrected for porosity of the bone, estimated by a texture analysis performed on the cortical part of the bone.
In radiobiology, the relative biological effectiveness is the ratio of biological effectiveness of one type of ionizing radiation relative to another, given the same amount of absorbed energy. The RBE is an empirical value that varies depending on the type of ionizing radiation, the energies involved, the biological effects being considered such as cell death, and the oxygen tension of the tissues or so-called oxygen effect.
A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.
Dual X-ray absorptiometry and laser technique (DXL) in the area of bone density studies for osteoporosis assessment is an improvement to the DXA Technique, adding an exact laser measurement of the thickness of the region scanned. The addition of object thickness adds a third input to the two x-ray energies used by DXA, better solving the equation for bone and excluding more efficiently these soft tissues components.
Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Dual-energy imaging, i.e. imaging at two energy levels, is a special case of spectral imaging and is still the most widely used terminology, but the terms "spectral imaging" and "spectral CT" have been coined to acknowledge the fact that photon-counting detectors have the potential for measurements at a larger number of energy levels.
John A. Shepherd is an American physicist, professor of epidemiology and population sciences and director of the Shepherd Research Laboratory at the University of Hawaii Cancer Center in Honolulu, Hawaii. He is an expert in the use of dual-energy X-ray absorptiometry (DXA) for quantitative bone and soft tissue imaging, and pioneered the use of 3D optical imaging of the whole body for quantifying body composition and associated diseases including cancer risk, obesity, diabetes, and frailty. In 2016, he was the President of the Board of the International Society for Clinical Densitometry.