Singular integral operators on closed curves

Last updated

In mathematics, singular integral operators on closed curves arise in problems in analysis, in particular complex analysis and harmonic analysis. The two main singular integral operators, the Hilbert transform and the Cauchy transform, can be defined for any smooth Jordan curve in the complex plane and are related by a simple algebraic formula. In the special case of Fourier series for the unit circle, the operators become the classical Cauchy transform, the orthogonal projection onto Hardy space, and the Hilbert transform a real orthogonal linear complex structure. In general the Cauchy transform is a non-self-adjoint idempotent and the Hilbert transform a non-orthogonal complex structure. The range of the Cauchy transform is the Hardy space of the bounded region enclosed by the Jordan curve. The theory for the original curve can be deduced from that of the unit circle, where, because of rotational symmetry, both operators are classical singular integral operators of convolution type. The Hilbert transform satisfies the jump relations of Plemelj and Sokhotski, which express the original function as the difference between the boundary values of holomorphic functions on the region and its complement. Singular integral operators have been studied on various classes of functions, including Hölder spaces, Lp spaces and Sobolev spaces. In the case of L2 spaces—the case treated in detail below—other operators associated with the closed curve, such as the Szegő projection onto Hardy space and the Neumann–Poincaré operator, can be expressed in terms of the Cauchy transform and its adjoint.

Contents

Operators on the unit circle

If f is in L2(T), then it has a Fourier series expansion [1] [2]

Hardy space H2(T) consists of the functions for which the negative coefficients vanish, an = 0 for n < 0. These are precisely the square-integrable functions that arise as boundary values of holomorphic functions in the unit disk |z| < 1. Indeed, f is the boundary value of the function

in the sense that the functions

defined by the restriction of F to the concentric circles |z| = r, satisfy

as .

The orthogonal projection P of L2(T) onto H2(T) is called the Szegő projection. It is a bounded operator on L2(T) with operator norm 1.

By Cauchy's theorem

Thus

When r equals 1, the integrand on the right hand side has a singularity at θ = 0. The truncated Hilbert transform is defined by

where δ = |1 – eiε|. Since it is defined as convolution with a bounded function, it is a bounded operator on L2(T). Now

If f is a polynomial in z then

By Cauchy's theorem the right hand side tends to 0 uniformly as ε, and hence δ, tends to 0. So

uniformly for polynomials. On the other hand, if u(z) = z it is immediate that

Thus if f is a polynomial in z−1 without constant term

uniformly.

Define the Hilbert transform on the circle by

Thus if f is a trigonometric polynomial

uniformly.

It follows that if f is any L2 function

in the L2 norm.

This is a consequence of the result for trigonometric polynomials since the Hε are uniformly bounded in operator norm: indeed their Fourier coefficients are uniformly bounded.

It also follows that, for a continuous function f on the circle, Hεf converges uniformly to Hf, so in particular pointwise. The pointwise limit is a Cauchy principal value, written

The Hilbert transform has a natural compatibility with orientation-preserving diffeomorphisms of the circle. [3] Thus if H is a diffeomorphism of the circle with

then the operators

are uniformly bounded and tend in the strong operator topology to H. Moreover, if Vf(z) = f(H(z)), then VHV−1H is an operator with smooth kernel, so a Hilbert–Schmidt operator.

Hardy spaces

The Hardy space on the unit circle can be generalized to any multiply connected bounded domain Ω with smooth boundary ∂Ω. The Hardy space H2(∂Ω) can be defined in a number of equivalent ways. The simplest way to define it is as the closure in L2(∂Ω) of the space of holomorphic functions on Ω which extend continuously to smooth functions on the closure of Ω. As Walsh proved, in a result that was a precursor of Mergelyan's theorem, any holomorphic function on Ω that extends continuously to the closure can be approximated in the uniform norm by a rational function with poles in the complementary region Ωc. If Ω is simply connected, then the rational function can be taken to be a polynomial. There is a counterpart of this theorem on the boundary, the Hartogs–Rosenthal theorem, which states that any continuous function ∂Ω can be approximated in the uniform norm by rational functions with poles in the complement of ∂Ω. It follows that for a simply connected domain when ∂Ω is a simple closed curve, H2(∂Ω) is just the closure of the polynomials; in general it is the closure of the space of rational functions with poles lying off ∂Ω. [4]

On the unit circle an L2 function f with Fourier series expansion

has a unique extension to a harmonic function in the unit disk given by the Poisson integral

In particular

so that the norms increase to the value at r = 1, the norm of f. A similar in the complement of the unit disk where the harmonic extension is given by

In this case the norms increase from the value at R = ∞ to the norm of f, the value at R = 1.

A similar result holds for a harmonic function f on a simply connected region with smooth boundary provided the L2 norms are taken over the level curves in a tubular neighbourhood of the boundary. [5] Using vector notation v(t) = (x(t), y(t)) to parametrize the boundary curve by arc length, the following classical formulas hold:

Thus the unit tangent vector t(t) at t and oriented normal vector n(t) are given by

The constant relating the acceleration vector to the normal vector is the curvature of the curve:

There are two further formulas of Frenet:

A tubular neighbourhood of the boundary is given by

so that the level curves ∂Ωs with s constant bound domains Ωs. Moreover [6]

Hence differentiating the integral means with respect to s, the derivative in the direction of the inward pointing normal, gives

using Green's theorem. Thus for s small

for some constant M independent of f. This implies that

so that, on integrating this inequality, the norms are bounded near the boundary:

This inequality shows that a function in the L2 Hardy space H2(Ω) leads, via the Cauchy integral operator C, to a holomorphic function on Ω satisfying the classical condition that the integral means

are bounded. Furthermore, the restrictions fs of f to ∂Ωs, which can be naturally identified with ∂Ω, tend in L2 to the original function in Hardy space. [7] In fact H2(Ω) has been defined as the closure in L2(Ω) of rational functions (which can be taken to be polynomials if Ω is simply connected). Any rational function with poles only in Ωc can be recovered inside Ω from its boundary value g by Cauchy's integral formula

The estimates above show that the functions Cg|∂Ωs depend continuously on Cg|∂Ω. Moreover, in this case the functions tend uniformly to the boundary value and hence also in L2, using the natural identification of the spaces L2(∂Ωs) with L2(∂Ω). Since Ch can be defined for any L2 function as a holomorphic function on Ω since h is integrable on ∂Ω. Since h is a limit in L2 of rational functions g, the same results hold for h and Ch, with the same inequalities for the integral means. Equally well h is the limit in L2(∂Ω) of the functions Ch|∂Ωs.

The estimates above for the integral means near the boundary show that Cf lies in L2(Ω) and that its L2 norm can be bounded in terms of that of f. Since Cf is also holomorphic, it lies in the Bergman space A2(Ω) of Ω. Thus the Cauchy integral operator C defines a natural mapping from the Hardy space of the boundary into the Bergman space of the interior. [8]

The Hardy space H2(Ω) has a natural partner, namely the closure in L2(∂Ω) of boundary values of rational functions vanishing at ∞ with poles only in Ω. Denoting this subspace by H2+(∂Ω) to distinguish it from the original Hardy space, which will also denoted by H2(∂Ω), the same reasoning as above can be applied. When applied to a function h in H2+(∂Ω), the Cauchy integral operator defines a holomorphic function F in Ωc vanishing at ∞ such that near the boundary the restriction of F to the level curves, each identified with the boundary, tend in L2 to h. Unlike the case of the circle, H2(∂Ω) and H2+(∂Ω) are not orthogonal spaces. By the Hartogs−Rosenthal theorem, their sum is dense in L2(∂Ω). As shown below, these are the ±i eigenspaces of the Hilbert transform on ∂Ω, so their sum is in fact direct and the whole of L2(∂Ω).

Hilbert transform on a closed curve

For a bounded simply connected domain Ω in the complex plane with smooth boundary ∂Ω, the theory of the Hilbert transform can be deduced by direct comparison with the Hilbert transform for the unit circle. [9]

To define the Hilbert transform H∂Ω on L2(∂Ω), take ∂Ω to be parametrized by arclength and thus a function z(t). The Hilbert transform is defined to be the limit in the strong operator topology of the truncated operators H∂Ωε defined by

To make the comparison it will be convenient to apply a scaling transformation in C so that the length of ∂Ω is 2π. (This only changes the operators above by a fixed positive factor.) There is then a canonical unitary isomorphism of L2(∂Ω) onto L2(T), so the two spaces can be identified. The truncated operators H∂Ωε can be compared directly with the truncated Hilbert transform Hε:

where

The kernel K is thus smooth on T × T, so the difference above tends in the strong topology to the Hilbert–Schmidt operator defined by the kernel. It follows that the truncated operators H∂Ωε are uniformly bounded in norm and have a limit in the strong operator topology denoted H∂Ω and called the Hilbert transform on ∂Ω.

Letting ε tend to 0 above yields

Since H is skew-adjoint and H∂Ω differs from H by a Hilbert–Schmidt operator with smooth kernel, it follows that H∂Ω + H∂Ω* is a Hilbert-Schmidt operator with smooth kernel. The kernel can also be computed explicitly using the truncated Hilbert transforms for ∂Ω:

and it can be verified directly that this is a smooth function on T × T. [10]

Plemelj–Sokhotski relation

Let C and C+ be the Cauchy integral operators for Ω and Ωc. Then

Since the operators C, C+ and H are bounded, it suffices to check this on rational functions F with poles off ∂Ω and vanishing at ∞ by the Hartogs–Rosenthal theorem. The rational function can be written as a sum of functions F = F + F+ where F has poles only in Ωc and F+ has poles only in Let f, f± be the restrictions of f, f± to ∂Ω. By Cauchy's integral formula

On the other hand, it is straightforward to check that [11]

Indeed, by Cauchy's theorem, since F is holomorphic in Ω,

As ε tends to 0, the latter integral tends to πif(w) by the residue calculus. A similar argument applies to f+, taking the circular contour on the right inside Ωc. [12]

By continuity it follows that H acts as multiplication by i on H2 and as multiplication by −i on H2+. Since these spaces are closed and their sum dense, it follows that

Moreover, H2 and H2+ must be the ±i eigenspaces of H, so their sum is the whole of L2(∂Ω). The Plemelj–Sokhotski relation for f in L2(∂Ω) is the relation

It has been verified for f in the Hardy spaces H2±(∂Ω), so is true also for their sum. The Cauchy idempotentE is defined by

The range of E is thus H2(∂Ω) and that of IE is H2+(∂Ω). From the above [13]

Operators on a closed curve

Two other operators defined on a closed curve ∂Ω can be expressed in terms of the Hilbert and Cauchy transforms H and E. [14]

The Szegő projectionP is defined to be the orthogonal projection onto Hardy space H2(∂Ω). Since E is an idempotent with range H2(∂Ω), P is given by the Kerzman–Stein formula:

Indeed, since EE* is skew-adjoint its spectrum is purely imaginary, so the operator I + EE* is invertible. [15] It is immediate that

Hence PE* = P. So

Since the operator H + H* is a Hilbert–Schmidt operator with smooth kernel, the same is true for EE*. [16]

Moreover, if J is the conjugate-linear operator of complex conjugation and U the operator of multiplication by the unit tangent vector:

then the formula for the truncated Hilbert transform on ∂Ω immediately yields the following identity for adjoints

Letting ε tend to 0, it follows that

and hence

The comparison with the Hilbert transform for the circle shows that commutators of H and E with diffeomorphisms of the circle are Hilbert–Schmidt operators. Similar their commutators with the multiplication operator corresponding to a smooth function f on the circle is also Hilbert–Schmidt operators. Up to a constant the kernel of the commutator with H is given by the smooth function

The Neumann–Poincaré operatorT is defined on real functions f as

Writing h = f + ig, [17]

so that

a Hilbert–Schmidt operator.

Classical definition of Hardy space

The classical definition of Hardy space is as the space of holomorphic functions F on Ω for which the functions Fs = F|∂Ωs have bounded norm in L2(∂Ω). An argument based on the Carathéodory kernel theorem shows that this condition is satisfied whenever there is a family of Jordan curves in Ω, eventually containing any compact subset in their interior, on which the integral means of F are bounded. [18]

To prove that the classical definition of Hardy space gives the space H2(∂Ω), take F as above. Some subsequence hn = Fsn converges weakly in L2(∂Ω) to h say. It follows that Ch = F in Ω. In fact, if Cn is the Cauchy integral operator corresponding to Ωsn, then [19]

Since the first term on the right hand side is defined by pairing hhn with a fixed L2 function, it tends to zero. If zn(t) is the complex number corresponding to vsn, then

This integral tends to zero because the L2 norms of hn are uniformly bounded while the bracketed expression in the integrand tends to 0 uniformly and hence in L2.

Thus F = Ch. On the other hand, if E is the Cauchy idempotent with range H2(∂Ω), then CE = C. Hence F =Ch = C (Eh). As already shown Fs tends to Ch in L2(∂Ω). But a subsequence tends weakly to h. Hence Ch = h and therefore the two definitions are equivalent. [20]

Generalizations

The theory for multiply connected bounded domains with smooth boundary follows easily from the simply connected case. [21] There are analogues of the operators H, E and P. On a given component of the boundary, the singular contributions to H and E come from the singular integral on that boundary component, so the technical parts of the theory are direct consequences of the simply connected case.

Singular integral operators on spaces of Hölder continuous functions are discussed in Gakhov (1990). Their action on Lp and Sobolev spaces is discussed in Mikhlin & Prössdorf (1986).

Notes

  1. Torchinsky 2004 , pp. 65–66
  2. Bell 1992 , pp. 14–15
  3. See:
  4. See:
  5. Bell 1992 , pp. 19–20
  6. Bell 1992 , pp. 19–22
  7. Bell 1992 , pp. 16–21
  8. Bell 1992 , p. 22
  9. See:
  10. Bell 1992 , pp. 15–16
  11. See:
  12. Titchmarsh 1939
  13. Bell 1992
  14. See:
  15. Shapiro 1992 , p. 65
  16. Bell 1992
  17. Shapiro 1992 , pp. 66–67
  18. Duren 1970 , p. 168
  19. Bell 1992 , pp. 17–18
  20. Bell 1992 , pp. 19–20
  21. See:

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.

References