Skagerrak-Centered Large Igneous Province

Last updated

The Skagerrak-Centered Large Igneous Province (SCLIP), also known as the European-Northwest African Large Igneous Province (EUNWA), [1] and Jutland LIP, is a 300 million year old (Ma) large igneous province (LIP) centered on what is today the Skagerrak strait in north-western Europe ( 57°50′N9°04′E / 57.833°N 9.067°E / 57.833; 9.067 Coordinates: 57°50′N9°04′E / 57.833°N 9.067°E / 57.833; 9.067 , paleocoordinates [2] 11°N16°E / 11°N 16°E / 11; 16 (south of Lake Chad)). It was named by Torsvik et al. 2008.

Contents

The SCLIP covered an area of at least 0.5×10^6 km2 (0.19×10^6 sq mi) and includes the Oslo and Skagerrak grabens, areas in south-western Sweden, Scotland, northern England, and the central North Sea. The SCLIP erupted at 297±4 Ma. [3] It produced 228,000 km² of currently exposed volcanic material that can be found in Skagerrak, the Oslo Fjord, central North Sea, North-east Germany; 14,000 km² of sills in Scotland, England, Germany, The Netherlands, and Sweden; and 3,353 km total length of dykes in Scotland, Norway, and Sweden. [4] The period of eruptions comprised a relatively short time span, perhaps less than 4 Ma, but magma propagated more than 1,000 km (620 mi) from the plume centre. [5]

Plumes derived from a superplume (or Large Low Shear Velocity Province (LLSVP)) overlay the boundary of the superplume at the core-mantle boundary (CMB). [6] To test whether the SCLIP met these criteria, Torsvik et al. used a shear-wave tomographic model of the mantle, in which the SCLIP indeed do project down to the margin of the African superplume at the CMB at a depth of 2800 km. [2] A series of LIPs are associated with the African superplume, of which the SCLIP is the oldest: SCLIP (300 Ma), Bachu (275 Ma), Emeishan (260 Ma), Siberian (250 Ma), and Central Atlantic (200 Ma). Its possible that these plumes together caused the break-up of Pangaea and therefore play an important role in the supercontinent cycle. [7]

The SCLIP is associated with the Moscovian and Kasimovian stages of the Carboniferous rainforest collapse around 296-310 Ma together with the Siberian Barguzin-Vitim LIP. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Flood basalt</span> The result of a very large volume eruption of basalt lava

A flood basalt is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reaching the surface of the earth via a mantle plume. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa, due to the characteristic stairstep geomorphology of many associated landscapes.

<span class="mw-page-title-main">Large igneous province</span> Huge regional accumulation of igneous rocks

A large igneous province (LIP) is an extremely large accumulation of igneous rocks, including intrusive and extrusive, arising when magma travels through the crust towards the surface. The formation of LIPs is variously attributed to mantle plumes or to processes associated with divergent plate tectonics. The formation of some of the LIPs in the past 500 million years coincide in time with mass extinctions and rapid climatic changes, which has led to numerous hypotheses about causal relationships. LIPs are fundamentally different from any other currently active volcanoes or volcanic systems.

<span class="mw-page-title-main">Kerguelen Plateau</span> Oceanic plateau in the southern Indian Ocean

The Kerguelen Plateau, also known as the Kerguelen–Heard Plateau, is an oceanic plateau and a large igneous province (LIP) located on the Antarctic Plate, in the southern Indian Ocean. It is about 3,000 km (1,900 mi) to the southwest of Australia and is nearly three times the size of California. The plateau extends for more than 2,200 km (1,400 mi) in a northwest–southeast direction and lies in deep water.

The Early Cretaceous or the Lower Cretaceous, is the earlier or lower of the two major divisions of the Cretaceous. It is usually considered to stretch from 145 Ma to 100.5 Ma.

The Ontong Java Plateau (OJP) is a massive oceanic plateau located in the southwestern Pacific Ocean, north of the Solomon Islands. The OJP was formed around 120 million years ago (Ma) with a much smaller volcanic event around 90 Ma. Two other southwestern Pacific plateaus, Manihiki and Hikurangi, now separated from the OJP by Cretaceous oceanic basins, are of similar age and composition and probably formed as a single plateau and a contiguous large igneous province together with the OJP. When eruption of lava had finished, the Ontong Java–Manihiki–Hikurangi plateau covered 1% of Earth's surface and represented a volume of 80 million km3 (19 million cu mi) of basaltic magma. This "Ontong Java event", first proposed in 1991, represents the largest volcanic event of the past 200 million years, with a magma eruption rate estimated at up to 22 km3 (5.3 cu mi) per year over 3 million years, several times larger than the Deccan Traps. The smooth surface of the OJP is punctuated by seamounts such as the Ontong Java Atoll, one of the largest atolls in the world.

<span class="mw-page-title-main">Paraná and Etendeka traps</span> Large igneous province in South America and Africa

The Paraná-Etendeka traps (or Paraná and Etendeka Plateau; or Paraná and Etendeka Province) comprise a large igneous province that includes both the main Paraná traps (in Paraná Basin, a South American geological basin) as well as the smaller severed portions of the flood basalts at the Etendeka traps (in northwest Namibia and southwest Angola). The original basalt flows occurred 138 to 128 million years ago. The province had a post-flow surface area of 1,500,000 square kilometres (580,000 sq mi) and an original volume projected to be in excess of 2.3 x 106 km³.

The Karoo and Ferrar Large Igneous Provinces (LIPs) are two large igneous provinces in Southern Africa and Antarctica respectively, collectively known as the Karoo-Ferrar, Gondwana, or Southeast African LIP, associated with the initial break-up of the Gondwana supercontinent at c.183Ma. Its flood basalt mostly covers South Africa and Antarctica but portions extend further into southern Africa and into South America, India, Australia and New Zealand.

The Caribbean large igneous province (CLIP) consists of a major flood basalt, which created this large igneous province (LIP). It is the source of the current large eastern Pacific oceanic plateau, of which the Caribbean-Colombian oceanic plateau is the tectonized remnant. The deeper levels of the plateau have been exposed on its margins at the North and South American plates. The volcanism took place between 139 and 69 million years ago, with the majority of activity appearing to lie between 95 and 88 Ma. The plateau volume has been estimated as on the order of 4 x 106 km³. It has been linked to the Galápagos hotspot.

The High Arctic Large Igneous Province (HALIP) is a Cretaceous large igneous province in the Arctic. The region is divided into several smaller magmatic provinces. Svalbard, Franz Josef Land, Sverdrup Basin, Amerasian Basin, and northern Greenland are some of the larger divisions. Today, HALIP covers an area greater than 1,000,000 km2 (390,000 sq mi), making it one of the largest and most intense magmatic complexes on the planet. However, eroded volcanic sediments in sedimentary strata in Svalbard and Franz Josef Land suggest that an extremely large portion of HALIP volcanics have already been eroded away.

The Emeishan Traps constitute a flood basalt volcanic province, or large igneous province, in south-western China, centred in Sichuan province. It is sometimes referred to as the Permian Emeishan Large Igneous Province or Emeishan Flood Basalts. Like other volcanic provinces or "traps", the Emeishan Traps are multiple layers of igneous rock laid down by large mantle plume volcanic eruptions. The Emeishan Traps eruptions were serious enough to have global ecological and paleontological impact.

<span class="mw-page-title-main">Hikurangi Plateau</span> Oceanic plateau in the South Pacific

The Hikurangi Plateau is an oceanic plateau in the South Pacific Ocean east of the North Island of New Zealand. It is part of a large igneous province (LIP) together with Manihiki and Ontong Java, now located 3,000 km (1,900 mi) and 3,500 km (2,200 mi) north of Hikurangi respectively. Mount Hikurangi, in Māori mythology the first part of the North Island to emerge from the ocean, gave its name to the plateau.

<span class="mw-page-title-main">North Atlantic Igneous Province</span> Large igneous province in the North Atlantic, centered on Iceland

The North Atlantic Igneous Province (NAIP) is a large igneous province in the North Atlantic, centered on Iceland. In the Paleogene, the province formed the Thulean Plateau, a large basaltic lava plain, which extended over at least 1.3 million km2 (500 thousand sq mi) in area and 6.6 million km3 (1.6 million cu mi) in volume. The plateau was broken up during the opening of the North Atlantic Ocean leaving remnants preserved in north Ireland, west Scotland, the Faroe Islands, northwest Iceland, east Greenland, western Norway and many of the islands located in the north eastern portion of the North Atlantic Ocean. The igneous province is the origin of the Giant's Causeway and Fingal's Cave. The province is also known as Brito–Arctic province and the portion of the province in the British Isles is also called the British Tertiary Volcanic Province or British Tertiary Igneous Province.

<span class="mw-page-title-main">Society hotspot</span> Pacific volcanic hotspot

The Society hotspot is a volcanic hotspot in the south Pacific Ocean which is responsible for the formation of the Society Islands, an archipelago of fourteen volcanic islands and atolls spanning around 720 km of the ocean which formed between 4.5 and <1 Ma.

<span class="mw-page-title-main">Shatsky Rise</span> Oceanic plateau in the north-west Pacific Ocean

The Shatsky Rise is Earth's third largest oceanic plateau, located in the north-west Pacific Ocean 1,500 km (930 mi) east of Japan. It is one of a series of Pacific Cretaceous large igneous provinces (LIPs) together with Hess Rise, Magellan Rise, and Ontong Java-Manihiki-Hikurangi. It was named for Nikolay Shatsky (1895-1960), a Soviet geologist, expert in tectonics of ancient platforms.

<span class="mw-page-title-main">Large low-shear-velocity provinces</span> Structures of the Earths mantle

Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle of Earth. These provinces are characterized by slow shear wave velocities and were discovered by seismic tomography of deep Earth. There are two main provinces: the African LLSVP and the Pacific LLSVP. Both extend laterally for thousands of kilometers and possibly up to 1,000 kilometers vertically from the core–mantle boundary. The Pacific LLSVP is 3,000 kilometers across, and underlies four hotspots that suggest multiple mantle plumes underneath. These zones represent around 8% of the volume of the mantle. Other names for LLSVPs include "superswells", "thermo-chemical piles", or "hidden reservoirs". Most of these names, however, are more interpretive of their proposed geodynamical or geochemical effects. For example, the name "thermo-chemical pile" interprets LLSVPs as lower-mantle piles of thermally hot and/or chemically distinct material. LLSVPs are still relatively mysterious, and many questions remain about their nature, origin, and geodynamic effects.

<span class="mw-page-title-main">Broken Ridge</span> Oceanic plateau in the Indian Ocean

The Broken Ridge or Broken Plateau is an oceanic plateau in the south-eastern Indian Ocean. The Broken Ridge once formed a large igneous province (LIP) together with the Kerguelen Plateau. When Australia and Antarctica started to separate, the Broken Ridge and the Kerguelen Plateau got separated by the Southeast Indian Ridge. Alkalic basalt from the Broken Ridge has been dated to 95 Ma.

<span class="mw-page-title-main">Panjal Traps</span>

The Panjal Traps or the Tethyan Plume is a large igneous province (LIP) that erupted during the Early–Middle Permian in what is now north-western India. The Panjal Traps are associated with the opening of the Neo-Tethys Ocean, which resulted in the dispersal of the Cimmerian continental blocks from the north-eastern margin of Gondwana and possibly the break-up of this old and large continent. In the Zanskar-Spliti-Lahaul area the 30–150 m (98–492 ft)-thick basalts of the Panjal Traps are mostly exposed as massive (terrestrial) lava flows, but also as (marine) pillow lavas and hyaloclastites.

<span class="mw-page-title-main">Okavango Dyke Swarm</span> Giant dyke swarm in northeast Botswana

The Okavango Dyke Swarm is a giant dyke swarm of the Karoo Large Igneous Province in northeast Botswana, southern Africa. It consists of a group of Proterozoic and Jurassic dykes, trending east-southeast across Botswana, spanning a region nearly 2,000 kilometres (1,200 mi) long and 110 kilometres (68 mi) wide. The Jurassic dykes were formed approximately 179 million years ago, composed of mainly tholeiitic mafic rocks. The formation is related to the magmatism at the Karoo triple junction, induced by the plate tectonic break up of the Gondwana supercontinent in the early Jurassic.

Magellan Rise is an oceanic plateau in the Pacific Ocean, which covers a surface area of 500,000 square kilometres (190,000 sq mi). There is another "Magellan Rise" west from the Marshall Islands as well.

<span class="mw-page-title-main">Kevin C. A. Burke</span> British geologist

Kevin C. A. Burke was a geologist known for his contributions in the theory of plate tectonics. In the course of his life, Burke held multiple professorships, most recent of which (1983-2018) was the position of professor of geology and tectonics at the Department of Earth and Atmospheric Science, University of Houston. His studies on plate tectonics, deep mantle processes, sedimentology, erosion, soil formation and other topics extended over several decades and influenced multiple generations of geologists and geophysicists around the world.

References

  1. E.g. Doblas et al. 1998 , Abstract; Bryan & Ferrari 2013 , Fig. 1, p. 1054
  2. 1 2 Torsvik et al. 2008 , Relationship of the Skagerrak LIP eruption site to the deep mantle, pp. 447–448
  3. Torsvik et al. 2008 , The Skagerrak-Centered Large Igneous Province, pp. 444–445
  4. Torsvik et al. 2008 , Fig. 1, p. 445
  5. Torsvik et al. 2008 , Conclusions, p. 451
  6. Torsvik et al. 2008 , Was the SCLIP generated by a mantle plume?, pp. 445-446
  7. Li & Zhong 2009 , Superplume record during the Pangean cycle, pp. 146–147
  8. Kravchinsky 2012 , Table 1, p. 33

Bibliography