Slave clock

Last updated
Diagram of electric time system used around 1910 to keep time in factories, schools, and other large institutions. The master clock (bottom center), controlled by a temperature-compensated mercury pendulum, is wired to slave clocks throughout the building. In addition to wall clocks, it also controls time stamps that are used to stamp documents with the time, and a turret clock used in a clock tower. The "program clock" is a timer that can be programmed with punched paper tape to ring bells or turn machines on and off at preprogrammed times. Master clock system.png
Diagram of electric time system used around 1910 to keep time in factories, schools, and other large institutions. The master clock (bottom center), controlled by a temperature-compensated mercury pendulum, is wired to slave clocks throughout the building. In addition to wall clocks, it also controls time stamps that are used to stamp documents with the time, and a turret clock used in a clock tower. The "program clock" is a timer that can be programmed with punched paper tape to ring bells or turn machines on and off at preprogrammed times.

In telecommunication and horology, a slave clock is a clock that depends on another clock, the master clock. Modern clocks are synchronized through the Internet or by radio time signals, to Coordinated Universal Time. UTC is based on a network of atomic clocks in many countries. For scientific purposes, precision clocks can be synchronized to within nanoseconds by dedicated satellite channels. Slave clock synchronization is usually achieved by phase-locking the slave clock signal to a signal received from the master clock. To adjust for the transit time of the signal from the master clock to the slave clock, the phase of the slave clocks are adjusted so that both clocks are in phase. Thus, the time markers of both clocks, at the output of the clocks, occur simultaneously. [1]

Contents

The predecessors of atomic clocks, computer clocks, and digital clocks, these electric clocks were synchronized by an electrical pulse, wired to their master clock in the same facility. Thus the terms "master" and "slave." From the late 19th to the mid 20th centuries, electrical master/slave clock systems were installed, all clocks in a building or facility synchronized through electric wires to a central master clock. Slave clocks either kept time by themselves, and were periodically corrected by the master clock, or required impulses from the master clock. Many slave clocks of these types were in operation, most commonly in schools, offices, military bases, hospitals, railway networks, telephone exchanges and factories the world over. [2] School bells of elementary schools, high schools, and others were able to be synchronized across an entire campus, connected to the system. In schools, the master clock was in the principal's office, with slave units in classrooms which were in other buildings on campus. In factories, a system with a bell or horn could signal the end of a shift, lunchtime or break time. Very few relics of this electrical, analogue system operate in the 21st century. Most 21st century systems of the type are digital. [3]

Pictures

Mechanical slave clocks from the 1950s and 1960s era.

See also

Related Research Articles

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency. And by incorporating a frequency divider, a PLL can generate a stable frequency that is a multiple of the input frequency.

<span class="mw-page-title-main">Clock signal</span> Timing of electronic circuits

In electronics and especially synchronous digital circuits, a clock signal is an electronic logic signal which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits. In a synchronous logic circuit, the most common type of digital circuit, the clock signal is applied to all storage devices, flip-flops and latches, and causes them all to change state simultaneously, preventing race conditions.

<span class="mw-page-title-main">DCF77</span> German time signal radio station

DCF77 is a German longwave time signal and standard-frequency radio station. It started service as a standard-frequency station on 1 January 1959. In June 1973 date and time information was added. Its primary and backup transmitter are located at 50°0′56″N9°00′39″E in Mainflingen, about 25 km south-east of Frankfurt am Main, Germany. The transmitter generates a nominal power of 50 kW, of which about 30 to 35 kW can be radiated via a T-antenna.

<span class="mw-page-title-main">Utility frequency</span> Frequency used on standard electricity grid in a given area

The utility frequency, (power) line frequency or mains frequency is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains electricity by country.

Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different rates. There are several problems that occur as a result of clock rate differences and several solutions, some being more acceptable than others in certain contexts.

<span class="mw-page-title-main">Clock network</span> Set of clocks that are automatically synchronized to show the same time

A clock network or clock system is a set of synchronized clocks designed to always show exactly the same time by communicating with each other. Clock networks usually consist of a central master clock kept in sync with an official time source, and one or more slave clocks which receive and display the time from the master.

The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP is employed to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.

Many services running on modern digital telecommunications networks require accurate synchronization for correct operation. For example, if telephone exchanges are not synchronized, then bit slips will occur and degrade performance. Telecommunication networks rely on the use of highly accurate primary reference clocks which are distributed network-wide using synchronization links and synchronization supply units.

<span class="mw-page-title-main">Quasi-Zenith Satellite System</span> Navigation satellites

The Quasi-Zenith Satellite System (QZSS), also known as Michibiki (みちびき), is a four-satellite regional satellite navigation system and a satellite-based augmentation system developed by the Japanese government to enhance the United States-operated Global Positioning System (GPS) in the Asia-Oceania regions, with a focus on Japan. The goal of QZSS is to provide highly precise and stable positioning services in the Asia-Oceania region, compatible with GPS. Four-satellite QZSS services were available on a trial basis as of 12 January 2018, and officially started on 1 November 2018. A satellite navigation system independent of GPS is planned for 2023 with seven satellites. In May 2023 it was announced that the system would expand to eleven satellites.

<span class="mw-page-title-main">Electric clock</span> Clock powered by electricity

An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.

In serial communication of digital data, clock recovery is the process of extracting timing information from a serial data stream itself, allowing the timing of the data in the stream to be accurately determined without separate clock information. It is widely used in data communications; the similar concept used in analog systems like color television is known as carrier recovery.

<span class="mw-page-title-main">Master clock</span> Precision clock that synchronizes other clocks in a network

A master clock is a precision clock that provides timing signals to synchronise slave clocks as part of a clock network. Networks of electric clocks connected by wires to a precision master pendulum clock began to be used in institutions like factories, offices, and schools around 1900. Modern radio clocks are synchronised by radio signals or Internet connections to a worldwide time system called Coordinated Universal Time (UTC), which is governed by primary reference atomic clocks in many countries.

<span class="mw-page-title-main">Shortt–Synchronome clock</span> Precision pendulum clock invented by William Hamilton Shortt and Frank Hope-Jones

The Shortt–Synchronome free pendulum clock is a complex precision electromechanical pendulum clock invented in 1921 by British railway engineer William Hamilton Shortt in collaboration with horologist Frank Hope-Jones, and manufactured by the Synchronome Company, Ltd., of London. They were the most accurate pendulum clocks ever commercially produced, and became the highest standard for timekeeping between the 1920s and the 1940s, after which mechanical clocks were superseded by quartz time standards. They were used worldwide in astronomical observatories, naval observatories, in scientific research, and as a primary standard for national time dissemination services. The Shortt was the first clock to be a more accurate timekeeper than the Earth itself; it was used in 1926 to detect tiny seasonal changes in the Earth's rotation rate. Shortt clocks achieved accuracy of around a second per year, although a recent measurement indicated they were even more accurate. About 100 were produced between 1922 and 1956.

<span class="mw-page-title-main">Self Winding Clock Company</span> Former manufacturer of electric clocks

The Self Winding Clock Company (SWCC) was a major manufacturer of electromechanical clocks from 1886 until about 1970. Based in New York City, the company was one of the first to power its clocks with an electric motor instead of winding by hand.

Synchronous Ethernet, also referred as SyncE, is an ITU-T standard for computer networking that facilitates the transference of clock signals over the Ethernet physical layer. This signal can then be made traceable to an external clock.

White Rabbit is the name of a collaborative project including CERN, GSI Helmholtz Centre for Heavy Ion Research and other partners from universities and industry to develop a fully deterministic Ethernet-based network for general purpose data transfer and sub-nanosecond accuracy time transfer. Its initial use was as a timing distribution network for control and data acquisition timing of the accelerator sites at CERN as well as in GSI's Facility for Antiproton and Ion Research (FAIR) project. The hardware designs as well as the source code are publicly available. The name of the project is a reference to the White Rabbit appearing in Lewis Carroll's novel Alice's Adventures in Wonderland.

<span class="mw-page-title-main">Frank Hope-Jones</span> British horologist

Frank Hope-Jones (1867–1950) was a British horologist.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

David Robertson was the first Professor of Electrical Engineering at Bristol University. Robertson had wide interests and one of these was horology – he wanted to provide the foundation of what we could call “horological engineering”, that is, a firm science-based approach to the design of accurate mechanical clocks. He contributed a long series on the scientific foundations of precision clocks to the Horological Journal which was the main publication for the trade in the UK; he and his students undertook research on clocks and pendulums ; and he designed at least one notable clock, to keep University time and control the chiming of Great George in the Wills Memorial Building from its inauguration on 1925, for which he also designed the chiming mechanism.

References

  1. PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
  2. Chelsea Clock (30 September 2016). "History Lesson – Master Clocks and Slave Clocks". chelseaclock.com. Retrieved 8 May 2022.
  3. TimeTools (2022). "Master Clocks: A Guide to Master-Slave Time Clock Systems". timetoolsltd.com. Retrieved 8 May 2022.