Clock network

Last updated
Diagram of electric time system used around 1910 to keep time in factories, schools, and other large institutions. The master clock, controlled by a temperature-compensated mercury pendulum, is wired to slave clocks throughout the building. In addition to wall clocks, it also controls time stamps that are used to stamp documents with the time, and a turret clock that is installed in a clock tower. The "program clock" is a timer that can be programmed with punched paper tape to ring bells or turn machines on and off at preprogrammed times. Master clock system.png
Diagram of electric time system used around 1910 to keep time in factories, schools, and other large institutions. The master clock, controlled by a temperature-compensated mercury pendulum, is wired to slave clocks throughout the building. In addition to wall clocks, it also controls time stamps that are used to stamp documents with the time, and a turret clock that is installed in a clock tower. The "program clock" is a timer that can be programmed with punched paper tape to ring bells or turn machines on and off at preprogrammed times.

A clock network or clock system is a set of synchronized clocks designed to always show exactly the same time by communicating with each other. Clock networks usually consist of a central master clock kept in sync with an official time source, and one or more slave clocks which receive and display the time from the master.

Contents

Synchronization sources

The master clock in a clock network can receive accurate time in a number of ways: through the United States GPS satellite constellation, a Network Time Protocol server, the CDMA cellular phone network, a modem connection to a time source, or by listening to radio transmissions from WWV or WWVH, or a special signal from an upstream broadcast network. Some master clocks don't determine the time automatically. Instead, they rely on an operator to manually set them.

Clock networks in critical applications often include a backup source to receive the time, or provisions to allow the master clock to maintain the time even if it loses access to its primary time source. For example, many master clocks can use the reliable frequency of the alternating current line they are connected to.

Slave clocks

Slave clocks come in many shapes and sizes. They can connect to the master clock through either a cable or a short-range wireless signal. In the 19th century Paris used a series of pneumatic tubes to transmit the signal. [1] Some slave clocks will run independently if they lose the master signal, often with a warning light lit. Others will freeze until the connection is restored.

Clock synchronization

Many master clocks include the capability to synchronize devices like computers to the master clock signal. Common features include the transmission of the time via RS-232, a Network Time Protocol, or a Pulse Per Second (PPS) contact. Others provide SMPTE time code outputs, which are often used in television settings to synchronize the video from multiple sources. Master Clocks often come equipped with programmable relay outputs to synchronize other devices such as lights, doors, etc.

Applications

One of the driving factors in developing clock networks was the broadcast industry. Television, in particular, operates on a very strict schedule, where each second of airtime is planned ahead of time and must be executed precisely. A central clock system allows a television station's master control and production personnel to work within that schedule. A clock network synchronized to the standard UTC time also allows different television facilities to coordinate their activities without complicated out-of-band signaling. It also provides accurate timing to equipment in stations that are becoming increasingly automated.

While television broadcasters were some of the first users of clock networks, the equipment is becoming increasingly useful in other industries. For example, the National Emergency Number Association issued directive NENA-04-002, offering standards in timekeeping for 911 dispatch centers throughout the United States. Other common clock network users include airports and schools.

History

One of the first clock networks was installed by Charles Shepherd for the Great Exhibition, held in London in 1851. Shepherd's technology was then installed at the Royal Greenwich Observatory, and a replica of his Shepherd Gate Clock outside the gate is still working, the original being severely damaged in a WWII air raid.

In the period before the universal availability of A.C. mains or atomic clocks, many clock networks were installed using a highly accurate pendulum clock as a master clock. This clock resembled a longcase clock, but had a very robust mechanism and a less ornate case. Electrical contacts attached to the mechanism generated minute, half minute and sometimes one second electrical pulses which were fed to the slave clocks on pairs of wires. The devices driven could be wall clocks, employee time clocks, tower clocks and occasionally clock chiming mechanisms. Some master clocks were set up to control the frequency of a generating authority's mains output; others, in the UK, were arranged to synchronise themselves with the Greenwich Time Signal pips.

Clock strata

[1] There is a hierarchy of clocks in a network, reflecting their quality. For example:

See also

Related Research Articles

<span class="mw-page-title-main">Analog television</span> Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another.

<span class="mw-page-title-main">Time signal</span> Signal used as a reference to determine the time of day

A time signal is a visible, audible, mechanical, or electronic signal used as a reference to determine the time of day.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification used for short-distance communication, primarily in embedded systems. The interface was developed by Motorola in the mid-1980s and has become a de facto standard. Typical applications include Secure Digital cards and liquid crystal displays.

<span class="mw-page-title-main">1-Wire</span> Device communications bus system

1-Wire is a device communications bus system designed by Dallas Semiconductor that provides low-speed (16.3 kbit/s) data, signaling, and power over a single conductor.

Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different rates. There are several problems that occur as a result of clock rate differences and several solutions, some being more acceptable than others in certain contexts.

The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP is employed to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.

<span class="mw-page-title-main">DIN sync</span> Synchronization interface for electronic musical instruments

DIN sync, also called Sync24, is a synchronization interface for electronic musical instruments. It was introduced in 1980 by Roland Corporation and has been superseded by MIDI.

CANopen is a communication protocol and device profile specification for embedded systems used in automation. In terms of the OSI model, CANopen implements the layers above and including the network layer. The CANopen standard consists of an addressing scheme, several small communication protocols and an application layer defined by a device profile. The communication protocols have support for network management, device monitoring and communication between nodes, including a simple transport layer for message segmentation/desegmentation. The lower level protocol implementing the data link and physical layers is usually Controller Area Network (CAN), although devices using some other means of communication can also implement the CANopen device profile.

A video signal generator is a type of signal generator which outputs predetermined video and/or television oscillation waveforms, and other signals used in the synchronization of television devices and to stimulate faults in, or aid in parametric measurements of, television and video systems. There are several different types of video signal generators in widespread use. Regardless of the specific type, the output of a video generator will generally contain synchronization signals appropriate for television, including horizontal and vertical sync pulses or sync words. Generators of composite video signals will also include a colorburst signal as part of the output.

<span class="mw-page-title-main">Phasor measurement unit</span>

A phasor measurement unit (PMU) is a device used to estimate the magnitude and phase angle of an electrical phasor quantity in the electricity grid using a common time source for synchronization. Time synchronization is usually provided by GPS or IEEE 1588 Precision Time Protocol, which allows synchronized real-time measurements of multiple remote points on the grid. PMUs are capable of capturing samples from a waveform in quick succession and reconstructing the phasor quantity, made up of an angle measurement and a magnitude measurement. The resulting measurement is known as a synchrophasor. These time synchronized measurements are important because if the grid’s supply and demand are not perfectly matched, frequency imbalances can cause stress on the grid, which is a potential cause for power outages.

<span class="mw-page-title-main">Electric clock</span> Clock powered by electricity

An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.

<span class="mw-page-title-main">Master clock</span> Precision clock that synchronizes other clocks in a network

A master clock is a precision clock that provides timing signals to synchronise slave clocks as part of a clock network. Networks of electric clocks connected by wires to a precision master pendulum clock began to be used in institutions like factories, offices, and schools around 1900. Modern radio clocks are synchronised by radio signals or Internet connections to a worldwide time system called Coordinated Universal Time (UTC), which is governed by primary reference atomic clocks in many countries.

<span class="mw-page-title-main">Shepherd Gate Clock</span> Clock outside Greenwich Observatory, London

The Shepherd Gate Clock is mounted on the wall outside the gate of the Royal Observatory, Greenwich building in Greenwich, Greater London. The clock, an early example of an electrically connected clock system, was a sympathetic clock mechanism controlled by electric pulses transmitted by a motor clock inside the main building. The network of 'sympathetic clocks' was constructed and installed by Charles Shepherd in 1852. The clock by the gate was probably the first to display Greenwich Mean Time to the public, and is unusual in using the 24-hour analog dial. Also it originally showed astronomical time which started at 12 noon not midnight.

<span class="mw-page-title-main">Load management</span> Process of balancing the supply of electricity on a network

Load management, also known as demand-side management (DSM), is the process of balancing the supply of electricity on the network with the electrical load by adjusting or controlling the load rather than the power station output. This can be achieved by direct intervention of the utility in real time, by the use of frequency sensitive relays triggering the circuit breakers, by time clocks, or by using special tariffs to influence consumer behavior. Load management allows utilities to reduce demand for electricity during peak usage times, which can, in turn, reduce costs by eliminating the need for peaking power plants. In addition, some peaking power plants can take more than an hour to bring on-line which makes load management even more critical should a plant go off-line unexpectedly for example. Load management can also help reduce harmful emissions, since peaking plants or backup generators are often dirtier and less efficient than base load power plants. New load-management technologies are constantly under development — both by private industry and public entities.

Sercos III is the third generation of the Sercos interface, a standardized open digital interface for the communication between industrial controls, motion devices, input/output devices (I/O), and Ethernet nodes, such as PCs. Sercos III applies the hard real-time features of the Sercos interface to Ethernet. It is based upon and conforms to the Ethernet standard. Work began on Sercos III in 2003, with vendors releasing first products supporting it in 2005.

Synchronous Serial Interface (SSI) is a widely used serial interface standard for industrial applications between a master (e.g. controller) and a slave (e.g. sensor). SSI is based on RS-422 standards and has a high protocol efficiency in addition to its implementation over various hardware platforms, making it very popular among sensor manufacturers. SSI was originally developed by Max Stegmann GmbH in 1984 for transmitting the position data of absolute encoders – for this reason, some servo/drive equipment manufacturers refer to their SSI port as a "Stegmann Interface". It was formerly covered by the German patent DE 34 45 617 which expired in 1990. It is very suitable for applications demanding reliability and robustness in measurements under varying industrial environments.

White Rabbit is the name of a collaborative project including CERN, GSI Helmholtz Centre for Heavy Ion Research and other partners from universities and industry to develop a fully deterministic Ethernet-based network for general purpose data transfer and sub-nanosecond accuracy time transfer. Its initial use was as a timing distribution network for control and data acquisition timing of the accelerator sites at CERN as well as in GSI's Facility for Antiproton and Ion Research (FAIR) project. The hardware designs as well as the source code are publicly available. The name of the project is a reference to the White Rabbit appearing in Lewis Carroll's novel Alice's Adventures in Wonderland.

<span class="mw-page-title-main">Incremental encoder</span> Electromechanical device

An incremental encoder is a linear or rotary electromechanical device that has two output signals, A and B, which issue pulses when the device is moved. Together, the A and B signals indicate both the occurrence of and direction of movement. Many incremental encoders have an additional output signal, typically designated index or Z, which indicates the encoder is located at a particular reference position. Also, some encoders provide a status output that indicates internal fault conditions such as a bearing failure or sensor malfunction.

References

  1. 1 2 Bruton, Eric (2000). The History of Clocks & Watches. Little, Brown and Company. p. 172. ISBN   0316853550.