Synchronization in telecommunications

Last updated

Many services running on modern digital telecommunications networks require accurate synchronization for correct operation. For example, if telephone exchanges are not synchronized, then bit slips will occur and degrade performance. Telecommunication networks rely on the use of highly accurate primary reference clocks which are distributed network-wide using synchronization links and synchronization supply units.

Contents

Ideally, clocks in a telecommunications network are synchronous, controlled to run at identical rates, or at the same mean rate with a fixed relative phase displacement, within a specified limited range. However, they may be mesochronous in practice. In common usage, mesochronous networks are often described as synchronous.

History

Synchronization in communications was a hard problem for Alexander Bain in the development of the teleprinter. [1] Thomas Edison achieved synchronization in his stock ticker with a clunky but effective unison mechanism to resynchronize periodically. [2] In the teleprinter world, Howard Krum finally came up with a good decoding mechanism for async signals around 1912. [3]

Synchronization remained a problem well into the electronic era. The final solution to the synchronization problem came with the phase-locked loop. Once available, analog TVs, modems, tape drives, VCRs, and other common devices synchronized consistently.

Components

Primary reference clock (PRC)

Modern telecommunications networks use highly accurate primary master clocks that must meet the international standards requirement for long term frequency accuracy better than 1 part in 1011. [4] To get this performance, atomic clocks or GPS disciplined oscillators are normally used.

Synchronization supply unit

Synchronization supply units (SSU) are used to ensure reliable synchronisation distribution. They have a number of key functions:

  1. They filter the synchronisation signal they receive to remove the higher frequency phase noise.
  2. They provide distribution by providing a scalable number of outputs to synchronise other local equipment.
  3. They provide a capability to carry on producing a high quality output even when their input reference is lost, this is referred to as holdover mode.

Quality metrics

In telecoms networks two key parameters are used for measurement of synchronisation performance. These parameters are defined by the International Telecommunication Union in its recommendation G.811, by European Telecommunications Standards Institute in its standard EN 300 462-1-1, by the ANSI Synchronization Interface Standard T1.101 defines profiles for clock accuracy at each stratum level, and by Telecordia/Bellcore standards GR-253 [5] and GR-1244. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Asynchronous Transfer Mode</span> Digital telecommunications protocol for voice, video, and data

Asynchronous Transfer Mode (ATM) is a telecommunications standard defined by the American National Standards Institute and International Telecommunication Union Telecommunication Standardization Sector for digital transmission of multiple types of traffic. ATM was developed to meet the needs of the Broadband Integrated Services Digital Network as defined in the late 1980s, and designed to integrate telecommunication networks. It can handle both traditional high-throughput data traffic and real-time, low-latency content such as telephony (voice) and video. ATM provides functionality that uses features of circuit switching and packet switching networks by using asynchronous time-division multiplexing. ATM was seen in the 1990s as a competitor to Ethernet and networks carrying IP traffic as, unlike Ethernet, it was faster and designed with quality-of-service in mind, but it fell out of favor once Ethernet reached speeds of 1 gigabits per second.

<span class="mw-page-title-main">Synchronization</span> Coordination of events to operate a system in unison

Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or in time. Systems that operate with all parts in synchrony are said to be synchronous or in sync—and those that are not are asynchronous.

The plesiochronous digital hierarchy (PDH) is a technology used in telecommunications networks to transport large quantities of data over digital transport equipment such as fibre optic and microwave radio systems. The term plesiochronous is derived from Greek plēsios, meaning near, and chronos, time, and refers to the fact that PDH networks run in a state where different parts of the network are nearly, but not quite perfectly, synchronized.

<span class="mw-page-title-main">Synchronous optical networking</span> Standardized protocol

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

In telecommunications, a transmission system is a system that transmits a signal from one place to another. The signal can be an electrical, optical or radio signal. The goal of a transmission system is to transmit data accurately and efficiently from point A to point B over a distance, using a variety of technologies such as copper cable and fiber-optic cables, satellite links, and wireless communication technologies.

In telecommunications, a plesiochronous system is one where different parts of the system are almost, but not quite, perfectly synchronised. According to ITU-T standards, a pair of signals are plesiochronous if their significant instants occur at nominally the same rate, with any variation in rate being constrained within specified limits. A sender and receiver operate plesiosynchronously if they operate at the same nominal clock frequency but may have a slight clock frequency mismatch, which leads to a drifting phase. The mismatch between the two systems' clocks is known as the plesiochronous difference.

<span class="mw-page-title-main">Radio clock</span> Type of clock which self-synchronizes its time using dedicated radio transmitters

A radio clock or radio-controlled clock (RCC), and often colloquially referred to as an "atomic clock", is a type of quartz clock or watch that is automatically synchronized to a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use the multiple transmitters used by satellite navigation systems such as Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed. Radio clocks may include any feature available for a clock, such as alarm function, display of ambient temperature and humidity, broadcast radio reception, etc.

Transaction Language 1 (TL1) is a widely used management protocol in telecommunications. It is a cross-vendor, cross-technology man-machine language, and is widely used to manage optical (SONET) and broadband access infrastructure in North America. TL1 is used in the input and output messages that pass between Operations Support Systems (OSSs) and Network Elements (NEs). Operations domains such as surveillance, memory administration, and access and testing define and use TL1 messages to accomplish specific functions between the OS and the NE. TL1 is defined in Telcordia Technologies Generic Requirements document GR-831-CORE.

In computer networks, a network element is a manageable logical entity uniting one or more physical devices. This allows distributed devices to be managed in a unified way using one management system.

Element management is concerned with managing network elements on the network element management layer (NEL) of the TMN . An element management system (EMS) manages one or more of a specific type of telecommunications network elements (NE).

Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different rates. There are several problems that occur as a result of clock rate differences and several solutions, some being more acceptable than others in certain contexts.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications network that uses only unpowered devices to carry signals, as opposed to electronic equipment. In practice, PONs are typically used for the last mile between Internet service providers (ISP) and their customers. In this use, a PON has a point-to-multipoint topology in which an ISP uses a single device to serve many end-user sites using a system such as 10G-PON or GPON. In this one-to-many topology, a single fiber serving many sites branches into multiple fibers through a passive splitter, and those fibers can each serve multiple sites through further splitters. The light from the ISP is divided through the splitters to reach all the customer sites, and light from the customer sites is combined into the single fiber. Many fiber ISPs prefer this system.

The Precision Time Protocol (PTP) is a protocol for clock synchronization throughout a computer network with relatively high precision and therefore potentially high accuracy. In a local area network (LAN), accuracy can be sub-microsecond – making it suitable for measurement and control systems. PTP is used to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.

Oscilloquartz, a company of ADVA Optical Networking, is a manufacturer of frequency sources, such as GPS& GLONASS receivers or caesium clocks for telecommunications applications and has been producing similar products for about 60 years. It also providers synchronization solutions for turnkey synchronization projects in e.g. PDH, SDH, SONET and all kind of mobile telecom networks e.g. GSM, X-CDMA, TETRA, 2.xG, 3G, 4G, UMTS, WiMAX.

Ethernet over PDH or EoPDH is one of many techniques that provided Ethernet connectivity over non-Ethernet networks. Specifically, EoPDH is a standardized methodology for transporting native Ethernet frames over the existing telecommunications copper infrastructure by leveraging the established PDH transport technology. EoPDH is one of several Ethernet transport technologies that enables Telecommunication Service Providers to offer "Carrier Ethernet" services. Also commonly used as a means of connecting businesses to a Metro Ethernet network.

G.811Timing characteristics of primary reference clocks is a recommendation from the ITU Telecommunication Standardization Sector (ITU-T). It specifies requirements for primary reference clock devices in synchronization networks. It discusses timing requirements for connecting national telecommunications networks. Primary reference clocks need to be highly accurate and are often based on caesium atomic clocks that meet the standards of G.811.

Time of arrival is the absolute time instant when a radio signal emanating from a transmitter reaches a remote receiver. The time span elapsed since the time of transmission is the time of flight . Time difference of arrival (TDOA) is the difference between TOAs.

Synchronous Ethernet, also referred as SyncE, is an ITU-T standard for computer networking that facilitates the transference of clock signals over the Ethernet physical layer. This signal can then be made traceable to an external clock.

Two independent clocks, once synchronized, will walk away from one another without limit. To have them display the same time it would be necessary to re-synchronize them at regular intervals. The period between synchronizations is referred to as holdover and performance under holdover relies on the quality of the reference oscillator, the PLL design, and the correction mechanisms employed.

White Rabbit is the name of a collaborative project including CERN, GSI Helmholtz Centre for Heavy Ion Research and other partners from universities and industry to develop a fully deterministic Ethernet-based network for general purpose data transfer and sub-nanosecond accuracy time transfer. Its initial use was as a timing distribution network for control and data acquisition timing of the accelerator sites at CERN as well as in GSI's Facility for Antiproton and Ion Research (FAIR) project. The hardware designs as well as the source code are publicly available. The name of the project is a reference to the White Rabbit appearing in Lewis Carroll's novel Alice's Adventures in Wonderland.

References

  1. Steven Roberts. "Distant Writing – Bain".
  2. "Stock Ticker", Thomas A. Edison Papers, Rutgers, retrieved 2024-09-20
  3. USPatent 1286351,issued December 1918
  4. ITU-T Rec. G.811 (09/97) Timing characteristics of primary reference clock | ITU-T
  5. GR-253 - Synchronous Optical Network (SONET) | Telcordia
  6. GR-1244 - Clocks for the Synchronized Network: | Telcordia