Isochronous signal

Last updated

In telecommunication, an isochronous signal is a signal in which the time interval separating any two significant instants is equal to the unit interval or a multiple of the unit interval. Variations in the time intervals are constrained within specified limits.

"Isochronous" is a characteristic of one signal, while "synchronous" indicates a relationship between two or more signals.

See also

Related Research Articles

IEEE 802 is a family of Institute of Electrical and Electronics Engineers (IEEE) standards for local area networks (LAN), personal area network (PAN), and metropolitan area networks (MAN). The IEEE 802 LAN/MAN Standards Committee (LMSC) maintains these standards. The IEEE 802 family of standards has twelve members, numbered 802.1 through 802.12, with a focus group of the LMSC devoted to each.

Synchronous optical networking

Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

In telecommunication, data signaling rate (DSR), also known as gross bit rate, is the aggregate rate at which data pass a point in the transmission path of a data transmission system.

  1. The DSR is usually expressed in bits per second.
  2. The data signaling rate is given by where m is the number of parallel channels, ni is the number of significant conditions of the modulation in the i-th channel, and Ti is the unit interval, expressed in seconds, for the i-th channel.
  3. For serial transmission in a single channel, the DSR reduces to (1/T)log2n; with a two-condition modulation, i. e. n = 2, the DSR is 1/T, according to Hartley's law.
  4. For parallel transmission with equal unit intervals and equal numbers of significant conditions on each channel, the DSR is (m/T)log2n; in the case of a two-condition modulation, this reduces to m/T.
  5. The DSR may be expressed in bauds, in which case, the factor log2ni in the above summation formula should be deleted when calculating bauds.
  6. In synchronous binary signaling, the DSR in bits per second may be numerically the same as the modulation rate expressed in bauds. Signal processors, such as four-phase modems, cannot change the DSR, but the modulation rate depends on the line modulation scheme, in accordance with Note 4. For example, in a 2400 bit/s 4-phase sending modem, the signaling rate is 2400 bit/s on the serial input side, but the modulation rate is only 1200 bauds on the 4-phase output side.

A sequence of events is isochronous if the events occur regularly, or at equal time intervals. The term isochronous is used in several technical contexts, but usually refers to the primary subject maintaining a constant period or interval, despite variations in other measurable factors in the same system. Isochronous timing is a characteristic of a repeating event whereas synchronous timing refers to the relationship between two or more events.

Isochronous burst transmission is a method of transmission. In a data network where the information-bearer channel rate is higher than the input data signaling rate, transmission is performed by interrupting, at controlled intervals, the data stream being transmitted.

In electronics and telecommunications, jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal. In clock recovery applications it is called timing jitter. Jitter is a significant, and usually undesired, factor in the design of almost all communications links.

Time-division multiplexing multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

In automata theory, sequential logic is a type of logic circuit whose output depends not only on the present value of its input signals but on the sequence of past inputs, the input history as well. This is in contrast to combinational logic, whose output is a function of only the present input. That is, sequential logic has state (memory) while combinational logic does not.

In telecommunications, a plesiochronous system is one where different parts of the system are almost, but not quite, perfectly synchronised. According to ITU-T standards, a pair of signals are plesiochronous if their significant instants occur at nominally the same rate, with any variation in rate being constrained within specified limits. A sender and receiver operate plesiosynchronously if they operate at the same nominal clock frequency but may have a slight clock frequency mismatch, which leads to a drifting phase. The mismatch between the two systems' clocks is known as the plesiochronous difference.

In electronics and especially synchronous digital circuits, a clock signal oscillates between a high and a low state and is used like a metronome to coordinate actions of digital circuits.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

In telecommunication, the term anisochronous refers to a periodic signal, pertaining to transmission in which the time interval separating any two corresponding transitions is not necessarily related to the time interval separating any other two transitions. It can also pertain to a data transmission in which there is always a whole number of unit intervals between any two significant instants in the same block or character, but not between significant instants in different blocks or characters.

Single-frequency network

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

In telecommunication, a mesochronous network is a network in which the clocks run with the same frequency but unknown phases. Compare synchronous network.

Many services running on modern digital telecommunications networks require accurate synchronization for correct operation. For example, if telephone exchanges are not synchronized, then slips will occur and degrade performance. Telecommunication networks rely on the use of highly accurate primary reference clocks which are distributed network-wide using synchronization links and synchronization supply units.

The primary focus of this article is asynchronous control in digital electronic systems. In a synchronous system, operations are coordinated by one, or more, centralized clock signals. An asynchronous system, in contrast, has no global clock. Asynchronous systems do not depend on strict arrival times of signals or messages for reliable operation. Coordination is achieved using event-driven architecture triggered by network packet arrival, changes (transitions) of signals, handshake protocols, and other methods.

In digital electronic design a clock domain crossing (CDC), or simply clock crossing, is the traversal of a signal in a synchronous digital circuit from one clock domain into another. If a signal does not assert long enough and is not registered, it may appear asynchronous on the incoming clock boundary.

In an alternating current electric power system, synchronization is the process of matching the speed and frequency of a generator or other source to a running network. An AC generator cannot deliver power to an electrical grid unless it is running at the same frequency as the network. If two segments of a grid are disconnected, they cannot exchange AC power again until they are brought back into exact synchronization.

MOST is a high-speed multimedia network technology optimized by the automotive industry. It can be used for applications inside or outside the car. The serial MOST bus uses a daisy-chain topology or ring topology and synchronous data communication to transport audio, video, voice and data signals via plastic optical fiber (POF) or electrical conductor physical layers.

Synchronous serial communication describes a serial communication protocol in which "data is sent in a continuous stream at constant rate."

References

PD-icon.svg This article incorporates  public domain material from the General Services Administration document: "Federal Standard 1037C".(in support of MIL-STD-188)