Smart bullet

Last updated

A smart bullet is a bullet that is able to do something other than simply follow its given trajectory, such as turning, changing speed or sending data. Such a projectile may be fired from a precision-guided firearm capable of programming its behavior. It is a miniaturized type of precision-guided munition.

Contents

Types of smart bullets

In 2008 the EXACTO program began under DARPA to develop a "fire and forget" smart sniper rifle system including a guided smart bullet and improved scope. The exact technologies of this smart bullet have yet to be released. EXACTO was test fired in 2014 and 2015 and results showing the bullet alter course to correct its path to its target were released. [1]

In 2012 Sandia National Laboratories announced a self-guided bullet prototype that could track a target illuminated with a laser designator. The bullet is capable of updating its position 30 times a second and hitting targets over a mile away. [2]

In mid-2016, Russia revealed it was developing a similar "smart bullet" weapon designed to hit targets at a distance of up to 10 kilometres (6.2 mi). [3] [4]

Guided bullet

The guided bullet was conceptualized by Dr. Rolin F. Barrett, Jr. and patented in August 1998. [5]

As first designed, the bullet would have three fiber-optic based eyes (at minimum, for three-dimensionality), evenly distributed about its circumference. To activate its guided nature, a laser is pointed at a target. As the bullet approaches its final destination, it adjusts its flight path in real time to allow an equivalent amount of light from the laser to enter each eye. The bullet would not travel in multiple directions as though it were an autonomous vehicle, but instead, would make small adjustments to its flight path to hit the target precisely where the laser was placed. Moreover, the laser would not have to originate from the source of the bullet, allowing the projectile to be fired at a target beyond visual range. [6]

To allow the bullet to modify its flight path, the body was designed as a metal and polymer combination. The polymer would act as a deformable surface that would deflect the air-stream and steer the bullet in real time. The guidance system is powered by a miniature lithium-polymer battery that is connected to the navigational circuits. [6]

Barrett went to great lengths to model the airflow of the bullet, studying butterflies with speed bumps to evaluate the effects of protruding surfaces. Due to a lack of ballistic programs at the time, custom simulations were written in Mathcad to solve for numerous flight variables. In addition to modeling the flight, the interior ballistics were modeled by continuously altering polynomial curves until they were in agreement with publicly available data. Due to a lack of available terminal ballistics data that would have been representative of the guided bullet, the data was compared to that of large game hunting bullets. [7]

Changing trajectory

One kind of smart bullet is a projectile that is capable of changing its course during flight. One use of this would be to enable soldiers to stay behind protective cover and shoot around corners. One implementation uses a spoiler and micro gyro to control the bullet. [8]

Honeywell Aerospace has produced inertial measurement units based on MEMS and microelectronics technologies that it claims can survive the shock of being fired out of a gun. [9]

Transmitting data

Another type of smart bullet is one that can transmit data about the location that has been hit. A prototype has been created by researchers at the University of Florida in Gainesville, Florida, USA with funding from Lockheed Martin. [10] The bullet (projectile) has the capability to send data up to a distance of 70 meters.

Related Research Articles

<span class="mw-page-title-main">Bullet</span> Projectile propelled by a firearm, sling, or air gun

A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constructions, including specialized functions such as hunting, target shooting, training, and combat. Bullets are often tapered, making them more aerodynamic. Bullet size is expressed by weight and diameter in both imperial and metric measurement systems. Bullets do not normally contain explosives but strike or damage the intended target by transferring kinetic energy upon impact and penetration.

<span class="mw-page-title-main">Cartridge (firearms)</span> Pre-assembled firearm ammunition consisting of a casing, projectile, propellant, and primer

A cartridge, also known as a round, is a type of pre-assembled firearm ammunition packaging a projectile, a propellant substance and an ignition device (primer) within a metallic, paper, or plastic case that is precisely made to fit within the barrel chamber of a breechloading gun, for convenient transportation and handling during shooting. Although in popular usage the term "bullet" is often used to refer to a complete cartridge, the correct usage only refers to the projectile.

<span class="mw-page-title-main">Projectile</span> Object propelled through the air

A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in warfare and sports.

<span class="mw-page-title-main">Sandia National Laboratories</span> National laboratory in Albuquerque, New Mexico.

Sandia National Laboratories (SNL), also known as Sandia, is one of three research and development laboratories of the United States Department of Energy's National Nuclear Security Administration (NNSA). Headquartered in Kirtland Air Force Base in Albuquerque, New Mexico, it has a second principal facility next to Lawrence Livermore National Laboratory in Livermore, California, and a test facility in Waimea, Kauai, Hawaii. Sandia is owned by the U.S. federal government but privately managed and operated by National Technology and Engineering Solutions of Sandia, a wholly owned subsidiary of Honeywell International.

<span class="mw-page-title-main">Terminal ballistics</span> Projectiles behavior after reaching their targets

Terminal ballistics is a sub-field of ballistics concerned with the behavior and effects of a projectile when it hits and transfers its energy to a target.

<span class="mw-page-title-main">Ballistics</span> Science of the motion of projectiles

Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing and accelerating projectiles so as to achieve a desired performance.

<span class="mw-page-title-main">.50 BMG</span> Rifle cartridge designed by John Moses Browning

The .50 BMG, also known as 12.7×99mm NATO, and designated as the 50 Browning by the C.I.P., is a .50 in (12.7 mm) caliber cartridge developed for the M2 Browning heavy machine gun in the late 1910s, entering official service in 1921. Under STANAG 4383, it is a standard service cartridge for NATO forces, as well as many non-NATO countries. The cartridge itself has been made in many variants: multiple generations of regular ball, tracer, armor-piercing (AP), incendiary, and saboted sub-caliber rounds. The rounds intended for machine guns are made into a continuous ammunition belt using metallic links.

Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.

<span class="mw-page-title-main">External ballistics</span> Behavior of projectiles in flight

External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.

<span class="mw-page-title-main">Ballistic gelatin</span> Testing medium used in ballistics

Ballistic gelatin is a testing medium designed to simulate the effects of bullet wounds in animal muscle tissue. It was developed and improved by Martin Fackler and others in the field of wound ballistics. It is calibrated to match pig muscle, which is ballistically similar to human muscle tissue.

<span class="mw-page-title-main">Smoothbore</span> Weapon that has a barrel without rifling

A smoothbore weapon is one that has a barrel without rifling. Smoothbores range from handheld firearms to powerful tank guns and large artillery mortars.

<span class="mw-page-title-main">Gun barrel</span> Firearm component which guides the projectile during acceleration

A gun barrel is a crucial part of gun-type weapons such as small firearms, artillery pieces, and air guns. It is the straight shooting tube, usually made of rigid high-strength metal, through which a contained rapid expansion of high-pressure gas(es) is used to propel a projectile out of the front end (muzzle) at a high velocity. The hollow interior of the barrel is called the bore, and the diameter of the bore is called its caliber, usually measured in inches or millimetres.

Hitscan in video game design, most commonly in first-person shooters, is a type of hit registration system that determines whether an object has been hit or not simply by scanning if the item used was aimed directly at its target and then applies the effects of the item instantly. A weapon, for example, does not launch a projectile the player needs to lead, damage is applied as soon as the player's crosshair is on a target and the fire button is pressed. Internally, this is most commonly done by simulating a ray from the origin of the item along the trajectory of the "projectile" and simply scanning for any objects touching the ray. Games might still show a visual of a projectile although it technically has no effect. In contrast, a projectile-based weapon would launch an actual projectile object that moves through the virtual space at a certain speed and will apply damage only once it has actually touched ("hit") a target.

<span class="mw-page-title-main">Laser guidance</span> Method of guiding a projectile to a target

Laser guidance directs a robotics system to a target position by means of a laser beam. The laser guidance of a robot is accomplished by projecting a laser light, image processing and communication to improve the accuracy of guidance. The key idea is to show goal positions to the robot by laser light projection instead of communicating them numerically. This intuitive interface simplifies directing the robot while the visual feedback improves the positioning accuracy and allows for implicit localization. The guidance system may serve also as a mediator for cooperative multiple robots. Examples of proof-of-concept experiments of directing a robot by a laser pointer are shown on video. Laser guidance spans areas of robotics, computer vision, user interface, video games, communication and smart home technologies.

<span class="mw-page-title-main">Ballistic coefficient</span> Physical measure of overcoming air resistance

In ballistics, the ballistic coefficient of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass. BC can be expressed with the units kilograms per square meter (kg/m2) or pounds per square inch (lb/in2).

<span class="mw-page-title-main">M982 Excalibur</span> 155 mm guided artillery shell

The M982 Excalibur is a 155 mm extended-range guided artillery shell developed in a collaborative effort between the U.S. Army Research Laboratory (ARL) and the United States Army Armament Research, Development and Engineering Center (ARDEC). The Excalibur was developed and/or manufactured by prime contractor Raytheon Missiles & Defense, BAE Systems AB and other subs and primes in multiple capacities such as Camber Corporation and Huntington Ingalls Industries. It is a GPS and inertial-guided munition capable of being used in close support situations within 75–150 meters (250–490 ft) of friendly troops or in situations where targets might be prohibitively close to civilians to attack with conventional unguided artillery fire. In 2015, the United States planned to procure 7,474 rounds with a FY 2015 total program cost of US$1.9341 billion at an average cost of US$258,777 per unit. By 2016, unit costs were reduced to US$68,000 per round. Versions that add laser-guidance capability and are designed to be fired from naval guns began testing in 2015. By October 2018, over 1,400 rounds had been fired in combat.

EXACTO, an acronym of "Extreme Accuracy Tasked Ordnance", is a sniper rifle firing smart bullets being developed for DARPA by Lockheed Martin and Teledyne Scientific & Imaging in November 2008.

The following are terms related to firearms and ammunition topics.

<span class="mw-page-title-main">Precision-guided munition</span> "Smart bombs", used to strike targets precisely

A precision-guided munition is a guided munition intended to precisely hit a specific target, to minimize collateral damage and increase lethality against intended targets. During the First Gulf War guided munitions accounted for only 9% of weapons fired, but accounted for 75% of all successful hits. Despite guided weapons generally being used on more difficult targets, they were still 35 times more likely to destroy their targets per weapon dropped.

<span class="mw-page-title-main">Precision-guided firearm</span> System for improving long-range accuracy

Precision guided firearms (PGFs) are long-range rifle systems designed to improve the accuracy of shooting at targets at extended ranges through target tracking, heads-up display, and advanced fire control. Inspired by missile lock-on and fighter jet technology, the application of PGF technology to small arms mitigates multiple sources of marksman error including mis-aim, trigger jerk and shot setup miscalculation. PGFs can significantly increase first shot success probability (FSSP) out to extreme ranges of 1,100 meters or more.

References

  1. "EXACTO Guided Bullet Demonstrates Repeatable Performance against Moving Targets". DARPA (Press release). April 27, 2015. Retrieved October 1, 2022.
  2. "Sandia's self-guided bullet prototype can hit target a mile away". Sandia National Laboratories (Press release). January 30, 2012. Archived from the original on December 20, 2016.
  3. "Russians Launch Smart Bullet Effort in the Wake of U.S. Program". Military.com . July 20, 2016. Retrieved October 1, 2022.
  4. "Russia launches 'smart bullet' testing in guided flight regime". TASS . July 19, 2016. Retrieved October 1, 2022.
  5. "US Patent for Guided bullet Patent (Patent # 5,788,178 issued August 4, 1998) - Justia Patents Search". patents.justia.com. Retrieved 2022-10-12.
  6. 1 2 “Feasibility Study of a Guided Bullet” (Louisiana Tech University Press 1996)
  7. Interview with Dr. Rolin F. Barrett, Jr (July 2020), Inventor on Guided bullet
  8. "Smart bullet | United States Patent 6422507". Free Patents Online. Retrieved October 1, 2022.
  9. "Inertial Measurement Units". Honeywell Aerospace. Archived from the original on July 8, 2009.
  10. Knight, Will (May 28, 2004). "'Smart bullet' reports back wirelessly". New Scientist . Retrieved October 1, 2022.