Sodium dimethyldithiocarbamate

Last updated
Sodium dimethyldithiocarbamate
Me2dtcNa.svg
Identifiers
Properties
C3H6NNaS2
Molar mass 143.20 g·mol−1
Appearancewhite solid
Density 1.18 g/cm3
Melting point 106–108 °C (223–226 °F; 379–381 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium dimethyldithiocarbamate is the organosulfur compound with the formula NaS2NN(CH3)2. It is one of the simplest organic dithiocarbamates. It is a white or pale yellow, water soluble solid. The compound is a precursor to fungicides and rubber chemicals.

Contents

Preparation

Sodium dimethyldithiocarbamate typically crystallizes from water as the diihydrate NaS2CN(CH3)2.2H2O. The anhydrous salt and the trihydrate are often used interchangeably. [1]

Sodium dimethyldithiocarbamate is obtained by treating carbon disulfide with diethylamine in the presence of sodium hydroxide:

CS2 + HN(CH3)2 + NaOH → NaS2CN(CH3)2 + H2O

Other dithiocarbamates can be prepared similarly from secondary amines and carbon disulfide. They are used as chelating agents for transition metal ions and as precursors to herbicides and vulcanization reagents.

Uses

Iron tris(dimethyldithiocarbamate) (Fe(S2CNMe2)3) is illustrative of hundreds of known dithiocarbamate complexes. DMTCFE01Fe(dtc)3tight.png
Iron tris(dimethyldithiocarbamate) (Fe(S2CNMe2)3) is illustrative of hundreds of known dithiocarbamate complexes.

It is a component of various pesticides and rubber chemicals in the form of its salts. Well established derivatives include potassium dimethyldithiocarbamate) as well as its complexes zinc dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and nickel bis(dimethyldithiocarbamate). Oxidation gives thiram. [3] [4]

Related Research Articles

Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp.

<span class="mw-page-title-main">Carbon disulfide</span> Neurotoxic compound with formula S=C=S

Carbon disulfide is an inorganic compound with the chemical formula CS2 and structure S=C=S. It is also considered as the anhydride of thiocarbonic acid. It is a colorless, flammable, neurotoxic liquid that is used as a building block in organic synthesis. Pure carbon disulfide has a pleasant, ether- or chloroform-like odor, but commercial samples are usually yellowish and are typically contaminated with foul-smelling impurities.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

<span class="mw-page-title-main">Bisulfide</span> Inorganic anion containing one sulfur and one hydrogen atoms

Bisulfide is an inorganic anion with the chemical formula HS. It contributes no color to bisulfide salts, and its salts may have a distinctive putrid smell. It is a strong base. Bisulfide solutions are corrosive and attack the skin.

<span class="mw-page-title-main">Polysulfide</span> Molecules derived from sulfur chains

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula S2−
n
. These anions are the conjugate bases of polysulfanes H2Sn. Organic polysulfides generally have the formulae R1SnR2, where R is an alkyl or aryl group.

<span class="mw-page-title-main">Acetylacetone</span> Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3−C(=O)−CH2−C(=O)−CH3. It is classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3−C(=O)−CH=C(−OH)−CH3. The mixture is a colorless liquid. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. Acetylacetone is a building block for the synthesis of many coordination complexes as well as heterocyclic compounds.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

A xanthate is a salt or ester of a xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+. Xanthate also refers to the anion [R−O−CS2]. The formula of a xanthic acid is R−O−C(=S)−S−H, such as ethyl xanthic acid, while the formula of an ester of a xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός (xanthos) meaning 'yellowish' or 'golden', and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

<span class="mw-page-title-main">Chlorobenzene</span> Aromatic organochlorine compound

Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

<span class="mw-page-title-main">Sodium diethyldithiocarbamate</span> Chemical compound

Sodium diethyldithiocarbamate is the organosulfur compound with the formula NaS2CN(C2H5)2. It is a pale yellow, water soluble salt.

<span class="mw-page-title-main">Dithiocarbamate</span> Chemical group (>N–C(=S)–S–)

In organic chemistry, a dithiocarbamate is a functional group with the general formula R2N−C(=S)−S−R and structure >N−C(=S)−S−. It is the analog of a carbamate in which both oxygen atoms are replaced by sulfur atoms.

<span class="mw-page-title-main">Thiuram disulfide</span> Class of chemical compounds

Thiuram disulfides are a class of organosulfur compounds with the formula (R2NCSS)2. Many examples are known, but popular ones include R = Me and R = Et. They are disulfides obtained by oxidation of the dithiocarbamates. These compounds are used in sulfur vulcanization of rubber as well as in the manufacture of pesticides and drugs. They are typically white or pale yellow solids that are soluble in organic solvents.

Organovanadium chemistry is the chemistry of organometallic compounds containing a carbon (C) to vanadium (V) chemical bond. Organovanadium compounds find only minor use as reagents in organic synthesis but are significant for polymer chemistry as catalysts.

<span class="mw-page-title-main">Zinc bis(dimethyldithiocarbamate)</span> Chemical compound

Zinc dimethyldithiocarbamate is a coordination complex of zinc with dimethyldithiocarbamate. It is a pale yellow solid that is used as a fungicide, the sulfur vulcanization of rubber, and other industrial applications.

<span class="mw-page-title-main">Iron tris(dimethyldithiocarbamate)</span> Chemical compound

Iron tris(dimethyldithiocarbamate) is the coordination complex of iron with dimethyldithiocarbamate with the formula Fe(S2CNMe2)3 (Me = methyl). It is marketed as a fungicide.

<span class="mw-page-title-main">Mercaptobenzothiazole</span> Chemical compound

2-Mercaptobenzothiazole is an organosulfur compound with the formula C6H4(NH)SC=S. A white solid, it is used in the sulfur vulcanization of rubber.

<span class="mw-page-title-main">Nickel bis(dimethyldithiocarbamate)</span> Chemical compound

Nickel bis(dimethyldithiocarbamate) is the coordination complex on nickel and dimethyldithiocarbamate, with the formula Ni(S2CNMe2)2 (Me = methyl). It is the prototype for a large number of bis(dialkhyldithiocarbamate)s of nickel(II), which feature diverse organic substituents, most of which have feature square planar molecular geometry. Nickel bis(dimethyldithiocarbamate) has been marketed as a fungicide and related complexes are used as stabilizers in polymers.

<span class="mw-page-title-main">Methyl dimethyldithiocarbamate</span> Chemical compound

Methyl dimethyldithiocarbamate is the organosulfur compound with the formula (CH3)2NC(S)SCH3. It is the one of simplest dithiocarbamic esters. It is a white volatile solid that is poorly soluble in water but soluble in many organic solvents. It was once used as a pesticide.

<span class="mw-page-title-main">Cobalt tris(diethyldithiocarbamate)</span> Chemical compound

Cobalt tris(diethyldithiocarbamate) is the coordination complex of cobalt with diethyldithiocarbamate with the formula Co(S2CNEt2)3 (Et = ethyl). It is a diamagnetic green solid that is soluble in organic solvents.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

References

  1. Mereiter, K.; Preisinger, A.; Mikenda, W.; Steidl, H. (1985). "Hydrogen bonds in sodium dialkylthiocarbamate hydrates. X-ray diffraction and vibrational spectroscopic study". Inorganica Chimica Acta. 98 (2): 71–78. doi:10.1016/s0020-1693(00)84914-2.
  2. D. Coucouvanis (2007). "The Chemistry of the Dithioacid and 1,1-Dithiolate Complexes". Progress in Inorganic Chemistry. 11: 233–371. doi:10.1002/9780470166123.ch4. ISBN   9780470166123.
  3. "Dimethyldithiocarbamate salts". Environmental Protection Agency . Retrieved July 26, 2016.
  4. Rüdiger Schubart (2000). "Dithiocarbamic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_001. ISBN   3527306730.