In mathematics, the sophomore's dream is the pair of identities (especially the first)
discovered in 1697 by Johann Bernoulli.
The numerical values of these constants are approximately 1.291285997... and 0.7834305107..., respectively.
The name "sophomore's dream" [1] is in contrast to the name "freshman's dream" which is given to the incorrect [note 1] identity . The sophomore's dream has a similar too-good-to-be-true feel, but is true.
The proofs of the two identities are completely analogous, so only the proof of the second is presented here. The key ingredients of the proof are:
In details, xx can be expanded as
Therefore,
By uniform convergence of the power series, one may interchange summation and integration to yield
To evaluate the above integrals, one may change the variable in the integral via the substitution With this substitution, the bounds of integration are transformed to giving the identity By Euler's integral identity for the Gamma function, one has so that
Summing these (and changing indexing so it starts at n= 1 instead of n = 0) yields the formula.
The original proof, given in Bernoulli, [2] and presented in modernized form in Dunham, [3] differs from the one above in how the termwise integral is computed, but is otherwise the same, omitting technical details to justify steps (such as termwise integration). Rather than integrating by substitution, yielding the Gamma function (which was not yet known), Bernoulli used integration by parts to iteratively compute these terms.
The integration by parts proceeds as follows, varying the two exponents independently to obtain a recursion. An indefinite integral is computed initially, omitting the constant of integration both because this was done historically, and because it drops out when computing the definite integral.
Integrating by substituting and yields:
(also in the list of integrals of logarithmic functions). This reduces the power on the logarithm in the integrand by 1 (from to ) and thus one can compute the integral inductively, as
where denotes the falling factorial; there is a finite sum because the induction stops at 0, since n is an integer.
In this case , and they are integers, so
Integrating from 0 to 1, all the terms vanish except the last term at 1, [note 2] which yields:
This is equivalent to computing Euler's integral identity for the Gamma function on a different domain (corresponding to changing variables by substitution), as Euler's identity itself can also be computed via an analogous integration by parts.
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783.
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".
In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is Lebesgue integrable on a rectangle , then one can evaluate the double integral as an iterated integral: This formula is generally not true for the Riemann integral, but it is true if the function is continuous on the rectangle. In multivariable calculus, this weaker result is sometimes also called Fubini's theorem, although it was already known by Leonhard Euler.
In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals, this typically involves unboundedness, either of the set over which the integral is taken or of the integrand, or both. It may also involve bounded but not closed sets or bounded but not continuous functions. While an improper integral is typically written symbolically just like a standard definite integral, it actually represents a limit of a definite integral or a sum of such limits; thus improper integrals are said to converge or diverge. If a regular definite integral is worked out as if it is improper, the same answer will result.
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent.
In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself. The corresponding quantity det(S) is called the functional determinant of S.
A product integral is any product-based counterpart of the usual sum-based integral of calculus. The product integral was developed by the mathematician Vito Volterra in 1887 to solve systems of linear differential equations.
In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, is a technique that provides an analytic expression for the Mellin transform of an analytic function.
Footnotes