Spectroscopy (magazine)

Last updated
Spectroscopy
EditorDavid Walsh
Categories Spectroscopy
FrequencyMonthly
PublisherMJH Associates
Year founded1985
CountryUnited States
Based in Iselin, New Jersey [1]
LanguageEnglish
Website www.spectroscopyonline.com
ISSN 0887-6703

Spectroscopy is a trade magazine published since 1985. [2] Spectroscopy has an editorial goal to promote and support the use of spectroscopic instrumentation in applied research, environmental testing, quality control, and the life sciences. [3]

Spectroscopy covers many techniques from analytical chemistry to include: atomic absorption and emission (including plasma-based methods such as ICP and ICP-MS); ultraviolet spectroscopy, visible spectroscopy; infrared spectroscopy (including FT-IR and Near-infrared spectroscopy; fluorescence, phosphorescence, and luminescence; Raman spectroscopy and FT-Raman; X-ray (XRF, XRD, and microanalysis); mass spectrometry; magnetic resonance (NMR, EPR, MRI); surface analysis (ESCA, SIMS, Auger); and laser-based spectroscopic techniques.

Related Research Articles

Spectroscopy Study involving matter and electromagnetic radiation

Spectroscopy is the study of the interaction between matter and electromagnetic radiation as a function of the wavelength or frequency of the radiation. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. An elementary description of absorption, emission and scattering spectroscopy is given in Chapter 1 of a student level text book. We can also consider matter waves and acoustic waves as forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Raman spectroscopy spectroscopic technique used to observe vibrational, rotational, and other low-frequency modes in a system

Raman spectroscopy ; is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Resonance Raman spectroscopy is a Raman spectroscopy technique in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. The frequency coincidence can lead to greatly enhanced intensity of the Raman scattering, which facilitates the study of chemical compounds present at low concentrations.

Photoacoustic spectroscopy is the measurement of the effect of absorbed electromagnetic energy on matter by means of acoustic detection. The discovery of the photoacoustic effect dates to 1880 when Alexander Graham Bell showed that thin discs emitted sound when exposed to a beam of sunlight that was rapidly interrupted with a rotating slotted disk. The absorbed energy from the light causes local heating, generating a thermal expansion which creates a pressure wave or sound. Later Bell showed that materials exposed to the non-visible portions of the solar spectrum can also produce sounds.

Near-field scanning optical microscope

Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is limited only by the diameter of the aperture. In particular, lateral resolution of 20 nm and vertical resolution of 2–5 nm have been demonstrated.

The chemical state of a chemical element is due to its electronic, chemical and physical properties as it exists in combination with itself or a group of one or more other elements. A chemical state is often defined as an "oxidation state" when referring to metal cations. When referring to organic materials, a chemical state is usually defined as a chemical group, which is a group of several elements bonded together. Material scientists, solid state physicists, analytical chemists, surface scientists and spectroscopists describe or characterize the chemical, physical and/or electronic nature of the surface or the bulk regions of a material as having or existing as one or more chemical states.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

Multivariate optical computing, also known as molecular factor computing, is an approach to the development of compressed sensing spectroscopic instruments, particularly for industrial applications such as process analytical support. "Conventional" spectroscopic methods often employ multivariate and chemometric methods, such as multivariate calibration, pattern recognition, and classification, to extract analytical information from data collected at many different wavelengths. Multivariate optical computing uses an optical computer to analyze the data as it is collected. The goal of this approach is to produce instruments which are simple and rugged, yet retain the benefits of multivariate techniques for the accuracy and precision of the result.

Photothermal microspectroscopy (PTMS), alternatively known as photothermal temperature fluctuation (PTTF), is derived from two parent instrumental techniques: infrared spectroscopy and atomic force microscopy (AFM). In one particular type of AFM, known as scanning thermal microscopy (SThM), the imaging probe is a sub-miniature temperature sensor, which may be a thermocouple or a resistance thermometer. This same type of detector is employed in a PTMS instrument, enabling it to provide AFM/SThM images: However, the chief additional use of PTMS is to yield infrared spectra from sample regions below a micrometer, as outlined below.

Instrumental chemistry

Instrumental analysis is a field of analytical chemistry that investigates analytes using scientific instruments.

The Federation of Analytical Chemistry and Spectroscopy Societies or FACSS is a scientific society incorporated on June 28, 1972 with the goal of promoting research and education in analytical chemistry. The organization combined the many smaller meetings of the individual societies into an annual meeting that includes all of analytical chemistry. The meetings are intended to provide a forum for scientists to address the development of analytical chemistry, chromatography, and spectroscopy.

The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy. This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously.

Applied Spectroscopy is a peer-reviewed scientific journal published monthly by the Society for Applied Spectroscopy, and it is also the official journal for this society. The editor-in-chief is Sergei G. Kazarian. The journal covers applications of spectroscopy in analytical chemistry, materials science, biotechnology, and chemical characterization.

Spectral line shape describes the form of a feature, observed in spectroscopy, corresponding to an energy change in an atom, molecule or ion. Ideal line shapes include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. Actual line shapes are determined principally by Doppler, collision and proximity broadening. For each system the half-width of the shape function varies with temperature, pressure and phase. A knowledge of shape function is needed for spectroscopic curve fitting and deconvolution.

Biomedical spectroscopy is a multidisciplinary research field involving spectroscopic tools for applications in the field of biomedical science. Vibrational spectroscopy such as Raman or infrared spectroscopy is used to determine the chemical composition of a material based on detection of vibrational modes of constituent molecules. Some spectroscopic methods are routinely used in clinical settings for diagnosis of disease; an example is Magnetic resonance imaging (MRI). Fourier transform infrared (FTIR) spectroscopic imaging is a form of chemical imaging for which the contrast is provided by composition of the material.

Yukihiro Ozaki is a Japanese scientist. Kwansei Gakuin University, Department of Chemistry, School of Science and Technology, professor emeritus, Fellow.

Reiner Salzer scientist

Reiner Salzer is a German chemist and university teacher of Analytical Chemistry at the TU Dresden.

Spectroelectrochemistry

Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Kuwana in 1964.

References

  1. Robert Thomas (25 April 2013). Practical Guide to ICP-MS: A Tutorial for Beginners, Third Edition. CRC Press. p. 393. ISBN   978-1-4665-5544-0 . Retrieved 8 December 2015.
  2. Spectroscopy Online
  3. Spectroscopy Magazine information