Spherulite (polymer physics)

Last updated

In polymer physics, spherulites (from Greek sphaira = ball and lithos = stone) are spherical semicrystalline regions inside non-branched linear polymers. Their formation is associated with crystallization of polymers from the melt and is controlled by several parameters such as the number of nucleation sites, structure of the polymer molecules, cooling rate, etc. Depending on those parameters, spherulite diameter may vary in a wide range from a few micrometers to millimeters. Spherulites are composed of highly ordered lamellae, which result in higher density, hardness, but also brittleness when compared to disordered regions in a polymer. The lamellae are connected by amorphous regions which provide elasticity and impact resistance. Alignment of the polymer molecules within the lamellae results in birefringence producing a variety of colored patterns, including a Maltese cross, when spherulites are viewed between crossed polarizers in an optical microscope.

Contents

Formation

Principle of lamellae formation during the crystallization of polymers. Arrow shows the direction of temperature gradient. Lamellenbildung bei der Kristallisation von PolymerenEN.svg
Principle of lamellae formation during the crystallization of polymers. Arrow shows the direction of temperature gradient.

If a molten linear polymer (such as polyethylene) is cooled down rapidly, then the orientation of its molecules, which are randomly aligned, curved and entangled remain frozen and the solid has disordered structure. However, upon slow cooling, some polymer chains take on a certain orderly configuration: they align themselves in plates called crystalline lamellae. [2]

Schematic model of a spherulite. Black arrows indicate direction of molecular alignment Spherulite2.PNG
Schematic model of a spherulite. Black arrows indicate direction of molecular alignment

Growth from the melt would follow the temperature gradient (see figure). For example, if the gradient is directed normal to the direction of molecular alignment then the lamella growth sideward into a planar crystallite. However, in absence of thermal gradient, growth occurs radially, in all directions resulting in spherical aggregates, that is spherulites. The largest surfaces of the lamellae are terminated by molecular bends and kinks, and growth in this direction results in disordered regions. Therefore, spherulites have semicrystalline structure where highly ordered lamellae plates are interrupted by amorphous regions. [2] [3]

The size of spherulites varies in a wide range, from micrometers up to 8 centimeter [4] and is controlled by the nucleation. Strong supercooling or intentional addition of crystallization seeds results in relatively large number of nucleation sites; then spherulites are numerous and small and interact with each other upon growth. In case of fewer nucleation sites and slow cooling, a few larger spherulites are created. [5] [6]

The seeds can be induced by impurities, plasticizers, fillers, dyes and other substances added to improve other properties of the polymer. This effect is poorly understood and irregular, so that the same additive can promote nucleation in one polymer, but not in another. Many of the good nucleating agents are metal salts of organic acids, which themselves are crystalline at the solidification temperature of the polymer solidification. [1]

Properties

Mechanical

Strain at failure vs. spherulite size. Spherul1.png
Strain at failure vs. spherulite size.

Formation of spherulites affects many properties of the polymer material; in particular, crystallinity, density, tensile strength and Young's modulus of polymers increase during spherulization. This increase is due to the lamellae fraction within the spherulites, where the molecules are more densely packed than in the amorphous phase. Stronger intermolecular interaction within the lamellae accounts for increased hardness, but also for higher brittleness. On the other hand, the amorphous regions between the lamellae within the spherulites give the material certain elasticity and impact resistance. [2]

Changes in mechanical properties of polymers upon formation of spherulites however strongly depend on the size and density of the spherulites. A representative example is shown in the figure demonstrating that the strain at failure rapidly decreases with the increase in the spherulite size and thus with the decrease in their number in isotactic polypropylene. Similar trends are observed for tensile strength, yield stress and toughness. [7] Increase in the total volume of the spherulites results in their interaction as well as shrinkage of the polymer, which becomes brittle and easily cracks under load along the boundaries between the spherulites. [7]

Optical

A spherulite embedded into a mosaic mesogen viewed between crossed polarizers. Spherulit in Mosaiktextur.jpg
A spherulite embedded into a mosaic mesogen viewed between crossed polarizers.

Alignment of the polymer molecules within the lamellae results in birefringence producing a variety of colored patterns when spherulites are viewed between crossed polarizers in an optical microscope. In particular, the so-called "Maltese cross" is often present which consists of four dark perpendicular cones diverging from the origin (see right picture), sometimes with a bright center (front picture). Its formation can be explained as follows. Linear polymer chains can be regarded as a linear polarizers. If their direction coincides with that of one of the crossed polarizers then little light is transmitted; the transmission is increased when the chains make a non-zero angle with both polarizers, and the induced transmittance is dependent on the wavelength, partly because of the absorption properties of the polymer. [8] [9]

A schematic of Maltese cross formation MalteseCross1.jpg
A schematic of Maltese cross formation

This effect results in the dark perpendicular cones (Maltese cross) and colored brighter regions in between them in the front and right pictures. It reveals that the molecular axis of the polymer molecules in the spherules is either normal or perpendicular to the radius vector, i.e. molecular orientation is uniform when going along a line from the spherulite center to its edge along its radius. However, this orientation changes with rotation angle. [8] [9] The pattern may be different (bright or dark) for the center of the spherulites indicating misorientation of the molecules in the nucleation seeds of individual spherulites. Any dark or light spots are dependent on the angle made with the polarizer, which results in a symmetrical image due to the spherical shape.

Spherulites embedded into a mosaic mesogen viewed between crossed polarizers. Spheruliten.jpg
Spherulites embedded into a mosaic mesogen viewed between crossed polarizers.

When spherulites were rotated in their plane, the corresponding Maltese cross patterns did not change, indicating that the molecular arrangement is homogeneous versus the polar angle. From the birefringence point of view, spherulites can be positive or negative. This distinction depends not on the orientation of the molecules (parallel or perpendicular to the radial direction) but to the orientation of the major refractive index of the molecule relative to the radial vector. The spherulite polarity depends on the constituent molecules, but it can also change with temperature. [4]

See also

Related Research Articles

Crystal Solid material forming a crystal lattice

A crystal or crystalline solid is a solid material whose constituents are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification.

Polymer Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules, or macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polypropylene Thermoplastic polymer

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

In physics and chemistry, flash freezing is the process whereby objects are frozen in just a few hours by subjecting them to cryogenic temperatures, or through direct contact with liquid nitrogen at −196 °C (−320.8 °F). It is commonly used in the food industry.

Crystallization Process by which a solid with a highly organised atomic or molecular structure forms

Crystallization or crystallisation is the process by which a solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some of the ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.

Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a big influence on hardness, density, transparency and diffusion. In an ideal gas, the relative positions of the atoms or molecules are completely random. Amorphous materials, such as liquids and glasses, represent an intermediate case, having order over short distances but not over longer distances.

Amorphous ice is an amorphous solid form of water. Common ice is a crystalline material wherein the molecules are regularly arranged in a hexagonal lattice, whereas amorphous ice has a lack of long-range order in its molecular arrangement. Amorphous ice is produced either by rapid cooling of liquid water, or by compressing ordinary ice at low temperatures.

Crystal growth Major stage of a crystallization process

A crystal is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. Crystal growth is a major stage of a crystallization process, and consists of the addition of new atoms, ions, or polymer strings into the characteristic arrangement of the crystalline lattice. The growth typically follows an initial stage of either homogeneous or heterogeneous nucleation, unless a "seed" crystal, purposely added to start the growth, was already present.

Hot-melt adhesive Glue applied by heating

Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature.

Environmental stress cracking

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

Polydioctylfluorene Chemical compound

Polydioctylfluorene (PFO) is an organic compound, a polymer of 9,9-dioctylfluorene, with formula (C13H6(C8H17)2)n. It is an electroluminescent conductive polymer that characteristically emits blue light. Like other polyfluorene polymers, it has been studied as a possible material for light-emitting diodes.

Polymer characterization is the analytical branch of polymer science.

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.

H. Douglas Keith

Harvey Douglas Keith was a physicist and one of the primary polymer researchers over the latter half of the 20th century.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

Hoffman nucleation theory is a theory developed by John D. Hoffman and coworkers in the 1970s and 80s that attempts to describe the crystallization of a polymer in terms of the kinetics and thermodynamics of polymer surface nucleation. The theory introduces a model where a surface of completely crystalline polymer is created and introduces surface energy parameters to describe the process. Hoffman nucleation theory is more of a starting point for polymer crystallization theory and is better known for its fundamental roles in the Hoffman–Weeks lamellar thickening and Lauritzen–Hoffman growth theory.

Poly(ethylene adipate) Chemical compound

Poly(ethylene adipate) or PEA is an aliphatic polyester. It is most commonly synthesized from a polycondensation reaction between ethylene glycol and adipic acid. PEA has been studied as it is biodegradable through a variety of mechanisms and also fairly inexpensive compared to other polymers. Its lower molecular weight compared to many polymers aids in its biodegradability.

X-ray birefringence imaging

X‑ray birefringence imaging (XBI) can be considered the X‑ray analogue of the polarizing optical microscope. XBI uses linearly polarized X-rays with an energy tuned to an elemental absorption edge. The tuned X-rays interact solely with the absorbing element, thus allowing the local anisotropy of the bonding environment of the X‑ray absorbing element to be studied. Due to the requirement of linearly polarized tunable X-rays a synchrotron source is necessary. Interaction with the bonding environment of the selected element in the sample changes the incident X-ray polarization plane. A polarization analyzer is used to diffract the rotated component of the polarization plane to an area detector. The greater the vertical component of the polarization plane the greater the intensity observed on the detector. In this way, it is possible to study the distribution of bond environments containing the X-ray absorbing element in a spatially resolved manner.

References

  1. 1 2 Georg Menges, Edmund Haberstroh, Walter Michaeli, Ernst Schmachtenberg: Plastics Materials Science Hanser Verlag, 2002, ISBN   3-446-21257-4
  2. 1 2 3 Charles E. Carraher; Raymond Benedict Seymour (2003). Seymour/Carraher's polymer chemistry. CRC Press. pp. 44–45. ISBN   0-8247-0806-7.
  3. Ehrenstein and Theriault pp.78,81 Figs. 4.15, 4.19
  4. 1 2 Cornelia Vasile (2000). Handbook of polyolefins. CRC Press. p. 183. ISBN   0-8247-8603-3.
  5. Linda C. Sawyer; David T. Grubb; Gregory F. Meyers (2008). Polymer microscopy. Springer. p. 5. ISBN   978-0-387-72627-4.
  6. Ehrenstein and Theriault pp.67,83
  7. 1 2 3 Ehrenstein and Theriault p.84
  8. 1 2 Ehrenstein and Theriault p.81
  9. 1 2 David I. Bower (2002). An introduction to polymer physics. Cambridge University Press. pp. 133–136. ISBN   0-521-63721-X.

Bibliography