Spider vision

Last updated
Hogna wolf spider (family Lycosidae) showing the enlarged posterior median eyes typical of the family Eye Arrangement of a Hogna Wolf Spider.png
Hogna wolf spider (family Lycosidae) showing the enlarged posterior median eyes typical of the family

The eyes of spiders vary significantly in their structure, arrangement, and function. They usually have eight, each being a simple eye with a single lens rather than multiple units as in the compound eyes of insects. The specific arrangement and structure of the eyes is one of the features used in the identification and classification of different species, genera, and families. Most haplogynes have six eyes, although some have eight (Plectreuridae), four (e.g., Tetrablemma ) or even two (most Caponiidae). In some cave species, there are no eyes at all (e.g. Stalita taenaria). Sometimes one pair of eyes is better developed than the rest. Several families of hunting spiders, such as jumping spiders and wolf spiders, have fair to excellent vision. The main pair of eyes in jumping spiders even sees in colour. [1]

Contents

Structure and anatomy

Spiders' eyes are simple eyes, or ocelli (singular ocellus), meaning their eyes have a single cuticular lens above a simple retina. [2] The retina is concave [3] and composed of visual and pigment cells, which lie beneath a cellular vitreous body. [2]

Categorisation

Basic arrangement of spider eyes, viewed from above Spider eyes labelled en.svg
Basic arrangement of spider eyes, viewed from above

Most spiders have eight eyes, which tend to be arranged into two rows of four eyes on the head region. The eyes can be categorised by their location and are divided into the anterior median eyes (AME), anterior lateral eyes (ALE), posterior median eyes (PME), and posterior lateral eyes (PLE). The exact arrangement of the eyes varies significantly by family, and to a lesser degree genus, so is often used as a diagnostic feature to identify or categorise spiders, especially in the field. [4] They can also be categorised by structure into the principal eyes (or main eyes), which are always the AME, and the secondary eyes, which are always the PME, ALE, and PLE. In six-eyed species, it is always the principal eyes which are absent. [2] [5] The secondary eyes normally have a light-reflecting layer, the tapetum, that makes the eyes appear pale. [6] The tapetum differs considerably between spider families but can be separated into three main types: PT (primitive type), CT (canoe type), and GT (grate type). Some spiders, such as jumping spiders, have no tapetum in their secondary eyes. [2]

Cross-sections of types of eye
Principal eyeThe three main types of secondary eyes
Primitive typeCanoe typeGrate type
Diagram of spider principal eye relabelled.svg Diagram of spider primitive eye.svg Diagram of spider canoe eye.svg Diagram of spider grate eye.svg
Key: 1 – lens; 2 – vitreous layer; 3 – visual cells; 4 – rhabdomeres (light-sensitive component of the visual cells);
5 – tapetum; 6 – retina; 7 – optic nerve

Principal eyes

In most species, the principal eyes are more visually acute than the secondary eyes, at the cost of their sensitivity. [5] They lack a tapetum entirely, and the retina is everted, meaning the rhabdomeres (light-sensitive parts of the visual cells) point towards the incoming light. [2] Some species can move the retina using between one and six muscles, greatly increasing the field of view. No actual focusing takes place; it is unnecessary, since the small lenses and short focal length of most spiders' principal eyes lead to a wide depth of field. [2] [3] When a spider has colour vision, it is typically the principal eyes which are responsible. [5]

Secondary eyes

The secondary eyes have an inverted retina, meaning the rhabdomeres face away from the incoming light. They also typically have a tapetum made up of crystals, which are likely guanine. [3] Because incoming light passes through the rhabdomeres both before and after being reflected by the tapetum, the sensitivity of the eyes is essentially doubled. [5] The exact structure of the tapetum varies significantly between families and genera, so is sometimes used as a diagnostic feature. [2] [3] Despite this variation, it can be divided into three main groups:

  1. The primitive-type tapetum fills the entire eye cup with holes only for the nerves; it is found mainly in the haplogyne, Mesothelae, and Mygalomorph (the more 'primitive') spiders. [2]
  2. The canoe-type tapetum is formed by two walls divided by a median gap, where the nerves exit; it is found in many families, including Theridiidae, Clubionidae, and Amaurobiidae. [2]
  3. The grate-type tapetum is the most efficient; the long vitreous body and spherical lens combine to produce a sharp, in focus image. It forms rows of crystals which lie beneath the visual cells, and the nerves exit through the gaps in the 'grate'. This type is found primarily in hunting spiders such as wolf spiders and fishing spiders. [2] [7]

Function

Most spiders' eyes can detect little more than brightness and motion, so vision plays only a minor role in behaviour. However some species, such as jumping spiders, wolf spiders, and deinopids, have more developed eyes which they use in hunting and courtship. [2] In species which can perceive colour, it is typically the principal eyes with colour perception. [5]

Detection of polarised light

All spiders possess photosensitive microvilli which have the capacity to be sensitive to the polarisation of light, as they preferably absorb light oscillating parallel to their long axis. These microvilli are arranged orthogonally in the eyes of several families, including jumping spiders, wolf spiders, and nursery web spiders. This is significant, because this orthogonal arrangement is also present in the 'dorsal rim area' used by some insects to detect the polarisation of light. Additionally, many spider families' secondary eyes possess polarising tapeta which may enhance the perception of polarised light. Despite this fact only one species, Drassodes cupreus , has been observed to detect polarised light with their secondary eyes. [8] Agelenids and lycosids have been shown to detect polarised light with the principal eyes. [2] [8] [9] The tarantula species Aphonopelma hentzi has also been shown to make use of polarised light in navigation. [10] [11]

Evolution

The evolution of spiders' eyes has received little attention, and as such not much is known on the subject. The principal and secondary eyes likely evolved separately, with the principal eyes being homogeneous to the ocelli of insects but the secondary eyes being derived from compound eyes. Since the secondary eyes lack the remnants of the borders between the ommatidia typically present in eyes evolved through fusion of the ommatidia, it is more likely that they developed through separation. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Eye</span> Organ that detects light and converts it into electro-chemical impulses in neurons

An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system.

<span class="mw-page-title-main">Night vision</span> Ability to see in low light conditions

Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, dogs, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.

<span class="mw-page-title-main">Tapetum lucidum</span> Layer of eye tissue which aids in night vision

The tapetum lucidum is a layer of tissue in the eye of many vertebrates and some other animals. Lying immediately behind the retina, it is a retroreflector. It reflects visible light back through the retina, increasing the light available to the photoreceptors. The tapetum lucidum contributes to the superior night vision of some animals. Many of these animals are nocturnal, especially carnivores, while others are deep sea animals.

<span class="mw-page-title-main">Jumping spider</span> Family of spiders

Jumping spiders are a group of spiders that constitute the family Salticidae. As of 2019, this family contained over 600 described genera and over 6,000 described species, making it the largest family of spiders at 13% of all species. Jumping spiders have some of the best vision among arthropods and use it in courtship, hunting, and navigation. Although they normally move unobtrusively and fairly slowly, most species are capable of very agile jumps, notably when hunting, but sometimes in response to sudden threats or crossing long gaps. Both their book lungs and tracheal system are well-developed, and they use both systems. Jumping spiders are generally recognized by their eye pattern. All jumping spiders have four pairs of eyes, with the anterior median pair being particularly large.

<span class="mw-page-title-main">Mantis shrimp</span> Order of crustaceans

Mantis shrimp are carnivorous marine crustaceans of the order Stomatopoda. Stomatopods branched off from other members of the class Malacostraca around 340 million years ago. Mantis shrimp typically grow to around 10 cm (3.9 in) in length, while a few can reach up to 38 cm (15 in). A mantis shrimp's carapace covers only the rear part of the head and the first four segments of the thorax. Varieties range in colour from shades of brown to vivid colours, with more than 520 species of mantis shrimp known. They are among the most important predators in many shallow, tropical and subtropical marine habitats. However, despite being common, they are poorly understood, as many species spend most of their lives sheltering in burrows and holes.

<span class="mw-page-title-main">Compound eye</span> Visual organ found in arthropods such as insects and crustaceans

A compound eye is a visual organ found in arthropods such as insects and crustaceans. It may consist of thousands of ommatidia, which are tiny independent photoreception units that consist of a cornea, lens, and photoreceptor cells which distinguish brightness and color. The image perceived by this arthropod eye is a combination of inputs from the numerous ommatidia, which are oriented to point in slightly different directions. Compared with single-aperture eyes, compound eyes have poor image resolution; however, they possess a very large view angle and the ability to detect fast movement and, in some cases, the polarization of light. Because a compound eye is made up of a collection of ommatidia, each with its own lens, light will enter each ommatidium instead of using a single entrance point. The individual light receptors behind each lens are then turned on and off due to a series of changes in the light intensity during movement or when an object is moving, creating a flicker-effect known as the flicker frequency, which is the rate at which the ommatidia are turned on and off– this facilitates faster reaction to movement; honey bees respond in 0.01s compared with 0.05s for humans.

<span class="mw-page-title-main">Ommatidium</span> Component of compound eyes of arthropods

The compound eyes of arthropods like insects, crustaceans and millipedes are composed of units called ommatidia. An ommatidium contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The outer part of the ommatidium is overlaid with a transparent cornea. Each ommatidium is innervated by one axon bundle and provides the brain with one picture element. The brain forms an image from these independent picture elements. The number of ommatidia in the eye depends upon the type of arthropod and range from as low as 5 as in the Antarctic isopod Glyptonotus antarcticus, or a handful in the primitive Zygentoma, to around 30,000 in larger Anisoptera dragonflies and some Sphingidae moths.

<span class="mw-page-title-main">Eye examination</span> Series of tests assessing vision and pertaining to the eyes

An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.

<i>Aphonopelma</i> Genus of spiders

Aphonopelma is a genus of tarantulas native to the Americas. It includes nearly all the North American tarantula species north of Mexico and a considerable percentage of the tarantula species that range into Central America. Most are fairly large tarantulas with leg spans of 6 in (16 cm) or more. Like most New World tarantulas, all species of Aphonopelma have urticating hairs. Despite their fearsome appearance, these tarantulas are not harmful to humans and some species are popular in the pet trade. With about 90 species described so far, Aphonopelma comprises about 10% of the total number of described tarantula species. However, their taxonomy is poorly understood and species are difficult to tell apart, especially those that are brown or black without other pattern. Therefore, the actual number of species is unknown, with more species likely to be identified in the near future. In captivity, they are usually fed crickets; in the wild, they eat most insects, including crickets, grasshoppers, cockroaches, mantises, and beetles.

<span class="mw-page-title-main">Simple eye in invertebrates</span> Simple eye without retina

A simple eye refers to a form of eye or an optical arrangement composed of a single lens and without an elaborate retina such as occurs in most vertebrates. In this sense "simple eye" is distinct from a multi-lensed "compound eye", and is not necessarily at all simple in the usual sense of the word.

<span class="mw-page-title-main">Evolution of the eye</span> Origins and diversification of the organs of sight through geologic time

Many scientists have found the evolution of the eye attractive to study because the eye distinctively exemplifies an analogous organ found in many animal forms. Simple light detection is found in bacteria, single-celled organisms, plants and animals. Complex, image-forming eyes have evolved independently several times.

<span class="mw-page-title-main">Equine vision</span>

The equine eye is one of the largest of any land mammal. Its visual abilities are directly related to the animal's behavior; for example, it is active during both day and night, and it is a prey animal. Both the strengths and weaknesses of the horse's visual abilities should be taken into consideration when training the animal, as an understanding of the horse's eye can help to discover why the animal behaves the way it does in various situations.

<i>Aphonopelma chalcodes</i> Species of spider

Aphonopelma chalcodes, commonly known as the western desert tarantula, desert blonde tarantula, Arizona blonde tarantula or Mexican blonde tarantula, is a species of spider belonging to the family Theraphosidae. It has a limited distribution in the deserts of Arizona and adjacent parts of Mexico but can be very common within this range. The common name "blonde tarantula" refers to the carapace, which is densely covered in pale hairs, and contrasts strongly with the all-dark legs and abdomen. Additionally, these spiders have low toxicity, a long life expectancy, and several offspring.

<span class="mw-page-title-main">Bird vision</span> Senses for birds

Vision is the most important sense for birds, since good eyesight is essential for safe flight. Birds have a number of adaptations which give visual acuity superior to that of other vertebrate groups; a pigeon has been described as "two eyes with wings". Birds are theropod dinosaurs, and the avian eye resembles that of other reptiles, with ciliary muscles that can change the shape of the lens rapidly and to a greater extent than in the mammals. Birds have the largest eyes relative to their size in the animal kingdom, and movement is consequently limited within the eye's bony socket. In addition to the two eyelids usually found in vertebrates, bird's eyes are protected by a third transparent movable membrane. The eye's internal anatomy is similar to that of other vertebrates, but has a structure, the pecten oculi, unique to birds.

<span class="mw-page-title-main">Mammalian eye</span>

Mammals normally have a pair of eyes. Although mammalian vision is not so excellent as bird vision, it is at least dichromatic for most of mammalian species, with certain families possessing a trichromatic color perception.

<span class="mw-page-title-main">Arthropod eye</span> Visual organs possessed by arthropods

Apposition eyes are the most common form of eye, and are presumably the ancestral form of compound eye. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by Limulus, the horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.

<span class="mw-page-title-main">Cephalopod eye</span> Visual sensory organs of cephalopod molluscs

Cephalopods, as active marine predators, possess sensory organs specialized for use in aquatic conditions. They have a camera-type eye which consists of an iris, a circular lens, vitreous cavity, pigment cells, and photoreceptor cells that translate light from the light-sensitive retina into nerve signals which travel along the optic nerve to the brain. For the past 140 years, the camera-type cephalopod eye has been compared with the vertebrate eye as an example of convergent evolution, where both types of organisms have independently evolved the camera-eye trait and both share similar functionality. Contention exists on whether this is truly convergent evolution or parallel evolution. Unlike the vertebrate camera eye, the cephalopods' form as invaginations of the body surface, and consequently the cornea lies over the top of the eye as opposed to being a structural part of the eye. Unlike the vertebrate eye, a cephalopod eye is focused through movement, much like the lens of a camera or telescope, rather than changing shape as the lens in the human eye does. The eye is approximately spherical, as is the lens, which is fully internal.

<span class="mw-page-title-main">Texas brown tarantula</span> Species of spider

The Aphonopelma hentzi, also known as Texas brown tarantula, Oklahoma brown tarantula, or Missouri tarantula, is one of the most common species of tarantula living in the Southern United States today. Texas brown tarantulas can grow to leg spans in excess of 10 cm (4 in), and weigh more than 85 g (3 oz) as adults. Their bodies are dark brown, though shades may vary between individual tarantulas. The colors are more distinct after a molt, as with many arthropods.

This glossary describes the terms used in formal descriptions of spiders; where applicable these terms are used in describing other arachnids.

<span class="mw-page-title-main">Vision in fish</span>

Vision is an important sensory system for most species of fish. Fish eyes are similar to the eyes of terrestrial vertebrates like birds and mammals, but have a more spherical lens. Birds and mammals normally adjust focus by changing the shape of their lens, but fish normally adjust focus by moving the lens closer to or further from the retina. Fish retinas generally have both rod cells and cone cells, and most species have colour vision. Some fish can see ultraviolet and some are sensitive to polarised light.

References

  1. Peaslee, Alan & Wilson, Graeme (May 1989). "Spectral sensitivity in jumping spiders (Araneae, Salticidae)". Journal of Comparative Physiology A. 164 (3): 359–363. doi:10.1007/BF00612995. PMID   2709341. S2CID   21329083.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Foelix, Rainer F. (2011). Biology of spiders (3rd ed.). New York: Oxford University Press. pp. 102–107. ISBN   978-0-19-981324-7. OCLC   693776865.
  3. 1 2 3 4 Barth, Friedrich G. (2002). A Spider's World : Senses and Behavior. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 129–143. ISBN   978-3-662-04899-3. OCLC   851367561.
  4. Bee, Lawrence; Oxford, Geoff; Smith, Helen (2020). Britain's Spiders: A Field Guide. Princeton University Press. p. 66. ISBN   978-0-691-20474-1.
  5. 1 2 3 4 5 6 Morehouse, Nathan; Steck, Mireill; Zurek, Daniel B.; Buschbeck, Elke K.; Porter, Megan (October 2017). "Molecular Evolution of Spider Vision: New Opportunities, Familiar Players". Biological Bulletin. doi:10.1086/693977.
  6. Saaristo, M.I. (2010). "Araneae". In Gerlach, J. & Marusik, Y. (eds.). Arachnida and Myriapoda of the Seychelles Islands. Manchester, UK: Siri Scientific Press. p. 19. ISBN   978-0-9558636-8-4.
  7. Benson, Kari; Suter, Robert B. (April 2013). "Reflections on the tapetum lucidum and eyeshine in lycosoid spiders". Journal of Arachnology. 41 (1): 43–52. doi:10.1636/b12-35.1. ISSN   0161-8202.
  8. 1 2 Dacke, Marie; Doan, Thuy A.; O’Carroll, David C. (2001-07-15). "Polarized light detection in spiders". Journal of Experimental Biology. 204 (14): 2481–2490. doi:10.1242/jeb.204.14.2481. hdl: 2440/11885 . ISSN   1477-9145.
  9. Schröer, Wolfgang-D (May 1975). Polarized light detection in an Agelenid spider, Agelena gracilens (pdf). 6th International Arachnological Congress. Vrije Universiteit, Amsterdam.
  10. Henton, Wendon W.; Crawford, F. T. (1966). "The discrimination of polarized light by the tarantula". Zeitschrift für Vergleichende Physiologie. 52 (1): 26–32. doi:10.1007/bf00343655. ISSN   0340-7594.
  11. Nentwig, Wolfgang (April 2012). "The species referred to as Eurypelma californicum (Theraphosidae) in more than 100 publications is likely to be Aphonopelma hentzi". Journal of Arachnology. 40 (1): 128–130. doi:10.1636/a11-69.1. ISSN   0161-8202.