Split interval

Last updated

In topology, the split interval, or double arrow space, is a topological space that results from splitting each point in a closed interval into two adjacent points and giving the resulting ordered set the order topology. It satisfies various interesting properties and serves as a useful counterexample in general topology.

Contents

Definition

The split interval can be defined as the lexicographic product equipped with the order topology. [1] Equivalently, the space can be constructed by taking the closed interval with its usual order, splitting each point into two adjacent points , and giving the resulting linearly ordered set the order topology. [2] The space is also known as the double arrow space, [3] [4] Alexandrov double arrow space or two arrows space.

The space above is a linearly ordered topological space with two isolated points, and in the lexicographic product. Some authors [5] [6] take as definition the same space without the two isolated points. (In the point splitting description this corresponds to not splitting the endpoints and of the interval.) The resulting space has essentially the same properties.

The double arrow space is a subspace of the lexicographically ordered unit square. If we ignore the isolated points, a base for the double arrow space topology consists of all sets of the form with . (In the point splitting description these are the clopen intervals of the form , which are simultaneously closed intervals and open intervals.) The lower subspace is homeomorphic to the Sorgenfrey line with half-open intervals to the left as a base for the topology, and the upper subspace is homeomorphic to the Sorgenfrey line with half-open intervals to the right as a base, like two parallel arrows going in opposite directions, hence the name.

Properties

The split interval is a zero-dimensional compact Hausdorff space. It is a linearly ordered topological space that is separable but not second countable, hence not metrizable; its metrizable subspaces are all countable.

It is hereditarily Lindelöf, hereditarily separable, and perfectly normal (T6). But the product of the space with itself is not even hereditarily normal (T5), as it contains a copy of the Sorgenfrey plane, which is not normal.

All compact, separable ordered spaces are order-isomorphic to a subset of the split interval. [7]

See also

Notes

  1. Todorcevic, Stevo (6 July 1999), "Compact subsets of the first Baire class", Journal of the American Mathematical Society, 12: 1179–1212, doi: 10.1090/S0894-0347-99-00312-4
  2. Fremlin, section 419L
  3. Arhangel'skii, p. 39
  4. Ma, Dan. "The Lexicographic Order and The Double Arrow Space".
  5. Steen & Seebach, counterexample #95, under the name of weak parallel line topology
  6. Engelking, example 3.10.C
  7. Ostaszewski, A. J. (February 1974), "A Characterization of Compact, Separable, Ordered Spaces", Journal of the London Mathematical Society, s2-7 (4): 758–760, doi:10.1112/jlms/s2-7.4.758

Related Research Articles

Compact space Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "holes" or "missing endpoints", i.e. that the space not exclude any "limiting values" of points. For example, the "unclosed" interval (0,1) would not be compact because it excludes the "limiting values" of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers ℚ is not compact because it has infinitely many "holes" corresponding to the irrational numbers, and the space of real numbers ℝ is not compact either because it excludes the limiting values and . However, the extended real number line would be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in Euclidean space, but may be inequivalent in other topological spaces.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

General topology Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

Hilbert cube Type of topological space

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube.

In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated in German with G for Gebiet meaning open set in this case and δ for Durchschnitt . Historically Gδ sets were also called inner limiting sets, but that terminology is not in use anymore. Gδ sets, and their dual, F𝜎 sets, are the second level of the Borel hierarchy.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In topology, the long line is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties. Therefore, it serves as one of the basic counterexamples of topology. Intuitively, the usual real-number line consists of a countable number of line segments laid end-to-end, whereas the long line is constructed from an uncountable number of such segments.

Zero-dimensional space Topological space of dimension zero

In mathematics, a zero-dimensional topological space is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point.

Sorgenfrey plane Frequently-cited counterexample in topology

In topology, the Sorgenfrey plane is a frequently-cited counterexample to many otherwise plausible-sounding conjectures. It consists of the product of two copies of the Sorgenfrey line, which is the real line under the half-open interval topology. The Sorgenfrey line and plane are named for the American mathematician Robert Sorgenfrey.

In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n − 1)-dimensional spheres have dimension n − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets.

In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. That is, a topological space X is a Moore space if the following conditions hold:

In mathematics, particularly topology, a Gδ space is a topological space in which closed sets are in a way ‘separated’ from their complements using only countably many open sets. A Gδ space may thus be regarded as a space satisfying a different kind of separation axiom. In fact normal Gδ spaces are referred to as perfectly normal spaces, and satisfy the strongest of separation axioms.

In general topology, the lexicographic ordering on the unit square is a topology on the unit square S, i.e. on the set of points (x,y) in the plane such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

References