Splitting storm

Last updated
Evolution of a Splitting Thunderstorm, With the Left Moving Storm Visibly Weaker Splitting Storm.jpg
Evolution of a Splitting Thunderstorm, With the Left Moving Storm Visibly Weaker

A splitting storm, commonly referred to as a "Splitting Supercell", is a phenomenon when a convective thunderstorm will appear to break in two, with one side propagating to the left (left mover) and the other to the right (right mover) of the hodograph. Mirror image storm splits are found in environments where there are large amounts of crosswise vorticity (i.e. the hodograph is straight, rather than curved) are present. Storm splits also occur in environments where streamwise vorticity is immediately present to an updraft (i.e. right or left curve to the hodograph), however in this situation one split is highly favored over the other, with the weaker split quickly dying; in this case, the lesser favored split may be so weak that the process is not noticeable on radar imagery.

Contents

Dynamics

Idealized example

Consider an idealized environment where easterly winds are present at the surface. Ascending through the vertical column, the wind profile strongly veers resulting in calm winds in the mid levels and strong westerlies in the upper levels. A hodograph in this environment would be presented as a straight line (starting to the left (west) of the origin, crossing straight through the origin, then ending some distance to the right (east) of the origin. This environment would produce large amounts of crosswise vorticity (via the right hand rule, vorticity with an axis of rotation perpendicular to the environmental flow). [1]

As an updraft begins to form, it will tend to tilt the crosswise vorticity lines into the vertical, resulting in an anticyclonic vorticity axis on the northern fringe and a cyclonic vorticity axis on the southern fringe of the updraft. At this point, despite vorticity lines being oriented in the vertical, the storm can not be considered a supercell, as the areas of rotation are outside of the main updraft. Due to the short time scale (scale analysis reveals the Coriolis acceleration in the vorticity equation is negligible on short time scales [2] ), the areas of vorticity result in low pressure (perturbations) on the flanks of the convective updraft. Given favorable environmental thermodynamics (sufficient buoyancy and negligible convective inhibition {CIN} [3] ) these pressure perturbations will induce mass flux from below, initiating new convective updrafts. These new updrafts are now located "off" the hodograph, with one to the left and one to the right, both co-located with the previously mentioned pressure perturbations. The updraft can now enhance the vorticity (by as much as several orders of magnitude) through stretching. [2] Additionally, since both new updrafts are now located off the hodograph, a streamwise vorticity component (quantifiable as Storm Relative Helicity...SRH) is able to be ingested into the storm (with the anticyclonic split ingesting negative SRH and the right split ingesting positive SRH). Each split now contains a rotating updraft and can be considered a supercell.

In this idealized environment, as new updrafts are initiated due to the pressure perturbations from the original split, additional crosswise vorticity will be tilted into the vertical on the flanks of the new updrafts. This will result in the continuation of the process that results in splitting, with a continuous propagation of new updrafts to the right and left of the hodograph. This allows each split to start the process over, splitting again and again until the environmental vertical wind shear no longer favors splitting supercells, or the storms have moved into an unfavorable thermodynamic environment.

Real world variations

Hodographs shapes are rarely a straight line; however, some are close enough to the idealized example that mirror image splits will appear in radar imagery. In most cases, however, there is usually a slight curvature in the hodograph, which tends to favor one split over the other. Take, for example, a hodograph that carves out a shallow right curve. Both crosswise and streamwise vorticity are present in this environment. As with the idealized environment, crosswise vorticity lines are tilted into the vertical on the flanks of this updraft. Once the pressure perturbations initiate new updrafts on the flanks and they begin to rotate as a result of stretching and ingestion of newly experienced streamwise vorticity. The right split, having propagated even farther right to the hodograph, has increased the magnitude of positive SRH ingestion. This will serve to increase the rotation in the updraft, intensifying the pressure perturbation, strengthening the storm. On the other hand, the left mover, rotating anticyclonically, is struggling to maintain its updraft since it is ingesting positive environmental SRH. In this case, the left split will tend to weaken, as the right split becomes dominant.

In extreme cases, where there is a strongly curving clockwise hodograph, the left mover will be so weak from the start, the splitting process will not be evident on radar, and dominant right movers will immediately be present shortly after convective initiation. [4]

Dominant left movers are rare, as a hodograph containing a counter-clockwise curving hodograph indicates backing winds and CAA, which does not favor ascent. [5]

Related Research Articles

<span class="mw-page-title-main">Tornado</span> Violently rotating column of air in contact with both the Earths surface and a cumulonimbus cloud

A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, although the word cyclone is used in meteorology to name a weather system with a low-pressure area in the center around which, from an observer looking down toward the surface of the Earth, winds blow counterclockwise in the Northern Hemisphere and clockwise in the Southern. Tornadoes come in many shapes and sizes, and they are often visible in the form of a condensation funnel originating from the base of a cumulonimbus cloud, with a cloud of rotating debris and dust beneath it. Most tornadoes have wind speeds less than 180 kilometers per hour, are about 80 meters across, and travel several kilometers before dissipating. The most extreme tornadoes can attain wind speeds of more than 480 kilometers per hour (300 mph), are more than 3 kilometers (2 mi) in diameter, and stay on the ground for more than 100 km.

<span class="mw-page-title-main">Thunderstorm</span> Type of weather with lightning and thunder

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

<span class="mw-page-title-main">Supercell</span> Thunderstorm that is characterized by the presence of a mesocyclone

A supercell is a thunderstorm characterized by the presence of a mesocyclone: a deep, persistently rotating updraft. Due to this, these storms are sometimes referred to as rotating thunderstorms. Of the four classifications of thunderstorms, supercells are the overall least common and have the potential to be the most severe. Supercells are often isolated from other thunderstorms, and can dominate the local weather up to 32 kilometres (20 mi) away. They tend to last 2–4 hours.

<span class="mw-page-title-main">Mesocyclone</span> Region of rotation within a powerful thunderstorm

A mesocyclone is a meso-gamma mesoscale region of rotation (vortex), typically around 2 to 6 mi in diameter, most often noticed on radar within thunderstorms. In the northern hemisphere it is usually located in the right rear flank of a supercell, or often on the eastern, or leading, flank of a high-precipitation variety of supercell. The area overlaid by a mesocyclone’s circulation may be several miles (km) wide, but substantially larger than any tornado that may develop within it, and it is within mesocyclones that intense tornadoes form.

<span class="mw-page-title-main">Squall</span> Short, sharp increase in wind speed

A squall is a sudden, sharp increase in wind speed lasting minutes, as opposed to a wind gust, which lasts for only seconds. They are usually associated with active weather, such as rain showers, thunderstorms, or heavy snow. Squalls refer to the increase of the sustained winds over that time interval, as there may be higher gusts during a squall event. They usually occur in a region of strong sinking air or cooling in the mid-atmosphere. These force strong localized upward motions at the leading edge of the region of cooling, which then enhances local downward motions just in its wake.

<span class="mw-page-title-main">Squall line</span> Line of thunderstorms along or ahead of a cold front

A squall line, or more accurately a quasi-linear convective system (QLCS), is a line of thunderstorms, often forming along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. Linear thunderstorm structures often contain heavy precipitation, hail, frequent lightning, strong straight-line winds, and occasionally tornadoes or waterspouts. Particularly strong straight-line winds can occur where the linear structure forms into the shape of a bow echo. Tornadoes can occur along waves within a line echo wave pattern (LEWP), where mesoscale low-pressure areas are present. Some bow echoes can grow to become derechos as they move swiftly across a large area. On the back edge of the rainband associated with mature squall lines, a wake low can be present, on very rare occasions associated with a heat burst.

In fluid dynamics, helicity is, under appropriate conditions, an invariant of the Euler equations of fluid flow, having a topological interpretation as a measure of linkage and/or knottedness of vortex lines in the flow. This was first proved by Jean-Jacques Moreau in 1961 and Moffatt derived it in 1969 without the knowledge of Moreau's paper. This helicity invariant is an extension of Woltjer's theorem for magnetic helicity.

<span class="mw-page-title-main">Cyclogenesis</span> The development or strengthening of cyclonic circulation in the atmosphere

Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere. Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.

<span class="mw-page-title-main">Anticyclonic storm</span> Type of storm

An anticyclonic storm is a storm with a high-pressure center, in which winds flow in the direction opposite to that of the flow above a region of low pressure. These storms can create powerful mesoanticylonic supercell storms that can generate anticyclonic tornadoes. Examples include the anticyclonic blizzard of 2018, Hartmut, and Neptune's anticyclonic cloud system.

<span class="mw-page-title-main">Funnel cloud</span> Funnel-shaped cloud of condensed water droplets, associated with a rotating column of wind

A funnel cloud is a funnel-shaped cloud of condensed water droplets, associated with a rotating column of wind and extending from the base of a cloud but not reaching the ground or a water surface. A funnel cloud is usually visible as a cone-shaped or needle like protuberance from the main cloud base. Funnel clouds form most frequently in association with supercell thunderstorms, and are often, but not always, a visual precursor to tornadoes. Funnel clouds are visual phenomena, these are not the vortex of wind itself.

<span class="mw-page-title-main">Gustnado</span> Ground vortex formed from a downburst of a thunderstorm

A gustnado is a brief, shallow surface-based vortex which forms within the downburst emanating from a thunderstorm. The name is a portmanteau by elision of "gust front tornado", as gustnadoes form due to non-tornadic straight-line wind features in the downdraft (outflow), specifically within the gust front of strong thunderstorms. Gustnadoes tend to be noticed when the vortices loft sufficient debris or form condensation cloud to be visible although it is the wind that makes the gustnado, similarly to tornadoes. As these eddies very rarely connect from the surface to the cloud base, they are very rarely considered as tornadoes. The gustnado has little in common with tornadoes structurally or dynamically in regard to vertical development, intensity, longevity, or formative process—as classic tornadoes are associated with mesocyclones within the inflow (updraft) of the storm, not the outflow.

<span class="mw-page-title-main">Anticyclonic tornado</span> Tornadoes that spin in the opposite direction of normal tornadoes

An anticyclonic tornado is a tornado which rotates in a clockwise direction in the Northern Hemisphere and a counterclockwise direction in the Southern Hemisphere. The term is a naming convention denoting the anomaly from normal rotation which is cyclonic in upwards of 98 percent of tornadoes. Many anticyclonic tornadoes are smaller and weaker than cyclonic tornadoes, forming from a different process, as either companion/satellite tornadoes or nonmesocyclonic tornadoes.

<span class="mw-page-title-main">Tornadogenesis</span> Process by which a tornado forms

Tornadogenesis is the process by which a tornado forms. There are many types of tornadoes and these vary in methods of formation. Despite ongoing scientific study and high-profile research projects such as VORTEX, tornadogenesis is a volatile process and the intricacies of many of the mechanisms of tornado formation are still poorly understood.

<span class="mw-page-title-main">Rear flank downdraft</span> Type of region

The rear flank downdraft (RFD) is a region of dry air wrapping around the back of a mesocyclone in a supercell thunderstorm. These areas of descending air are thought to be essential in the production of many supercellular tornadoes. Large hail within the rear flank downdraft often shows up brightly as a hook on weather radar images, producing the characteristic hook echo, which often indicates the presence of a tornado.

<span class="mw-page-title-main">Horizontal convective rolls</span>

Horizontal convective rolls, also known as horizontal roll vortices or cloud streets, are long rolls of counter-rotating air that are oriented approximately parallel to the ground in the planetary boundary layer. Although horizontal convective rolls, also known as cloud streets, have been clearly seen in satellite photographs for the last 30 years, their development is poorly understood, due to a lack of observational data. From the ground, they appear as rows of cumulus or cumulus-type clouds aligned parallel to the low-level wind. Research has shown these eddies to be significant to the vertical transport of momentum, heat, moisture, and air pollutants within the boundary layer. Cloud streets are usually more or less straight; rarely, cloud streets assume paisley patterns when the wind driving the clouds encounters an obstacle. Those cloud formations are known as von Kármán vortex streets.

<span class="mw-page-title-main">Atmospheric convection</span> Atmospheric phenomenon

Atmospheric convection is the result of a parcel-environment instability, or temperature difference layer in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day which expands the height of the planetary boundary layer leads to increased winds, cumulus cloud development, and decreased surface dew points. Moist convection leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.

A mesovortex is a small-scale rotational feature found in a convective storm, such as a quasi-linear convective system, a supercell, or the eyewall of a tropical cyclone. Mesovortices range in diameter from tens of miles to a mile or less and can be immensely intense.

The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

References

  1. "Vorticity_primer". www.cimms.ou.edu. Retrieved 2017-04-12.
  2. 1 2 http://envsci.rutgers.edu/~broccoli/dynamics_lectures/lect_18_dyn10_scaling_vort.pdf "Scaling of the Vorticity Equation" -Lecture
  3. Britt, Mark. "Forecasting Convective Mode and Severity" (PPT). National Weather Service (PowerPoint). Retrieved 2023-01-21.
  4. UCAR/COMET. "MetEd » Sign In". www.meted.ucar.edu. Retrieved 2017-04-12.
  5. "Q-G Height Tendency HOME". www.atmos.millersville.edu. Retrieved 2017-04-12.

General references