Sponastrime dysplasia

Last updated
Sponastrime dysplasia
Autosomal recessive - en.svg
This condition is inherited in an autosomal recessive manner.
Specialty Medical genetics
CausesMutations in the TONSL gene

Sponastrime dysplasia is a rare condition characterised by facial and skeletal abnormalities. [1] [2]

Contents

Signs and symptoms

The main features of this condition are evident in skeleton and face. [3]

Facial features:

Skeletal features:

On X ray:

Other associated conditions:

These are variably present [4]

Genetics

This condition has been associated with mutations in the Tonsoku-like, DNA repair protein (TONSL) gene. [5] [6] This gene is located on the long arm of chromosome 8 (8q24.3). This gene is also known as NFKBIL2.[ citation needed ]

Pathopysiology

This is not understood. It appears that the TONSL gene product is involved in genome repair. [7]

Diagnosis

This can be suspected when the usual facial and skeletal features are present. It is confirmed by sequencing the TONSL gene.[ citation needed ]

Differential diagnosis

Short limbed dwarfism syndrome in association with immunodeficiency.[ citation needed ]

Treatment

There is no specific treatment for this condition. Management is supportive.[ citation needed ]

Epidemiology

This condition is considered to be rare with less than 100 cases reported in the literature.[ citation needed ]

History

This condition was first described in 1983. [8]

Related Research Articles

<span class="mw-page-title-main">Stickler syndrome</span> Genetic connective tissue disorder

Stickler syndrome is a group of rare genetic disorders affecting connective tissue, specifically collagen. Stickler syndrome is a subtype of collagenopathy, types II and XI. Stickler syndrome is characterized by distinctive facial abnormalities, ocular problems, hearing loss, and joint and skeletal problems. It was first studied and characterized by Gunnar B. Stickler in 1965.

<span class="mw-page-title-main">Otospondylomegaepiphyseal dysplasia</span> Medical condition

Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive disorder of bone growth that results in skeletal abnormalities, severe hearing loss, and distinctive facial features. The name of the condition indicates that it affects hearing (oto-) and the bones of the spine (spondylo-), and enlarges the ends of bones (megaepiphyses).

<span class="mw-page-title-main">ROR2</span> Protein

Tyrosine-protein kinase transmembrane receptor ROR2, also known as neurotrophic tyrosine kinase, receptor-related 2, is a protein that in humans is encoded by the ROR2 gene located on position 9 of the long arm of chromosome 9. This protein is responsible for aspects of bone and cartilage growth. It is involved in Robinow syndrome and autosomal dominant brachydactyly type B. ROR2 is a member of the receptor tyrosine kinase-like orphan receptor (ROR) family.

An osteochondrodysplasia, or skeletal dysplasia, is a disorder of the development of bone and cartilage. Osteochondrodysplasias are rare diseases. About 1 in 5,000 babies are born with some type of skeletal dysplasia. Nonetheless, if taken collectively, genetic skeletal dysplasias or osteochondrodysplasias comprise a recognizable group of genetically determined disorders with generalized skeletal affection. These disorders lead to disproportionate short stature and bone abnormalities, particularly in the arms, legs, and spine. Skeletal dysplasia can result in marked functional limitation and even mortality.

<span class="mw-page-title-main">Multiple epiphyseal dysplasia</span> Rare genetic disorder

Multiple epiphyseal dysplasia (MED), also known as Fairbank's disease, is a rare genetic disorder that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.

Aarskog–Scott syndrome (AAS) is a rare disease inherited as X-linked and characterized by short stature, facial abnormalities, skeletal and genital anomalies. This condition mainly affects males, although females may have mild features of the syndrome.

<span class="mw-page-title-main">Laminopathy</span> Medical condition

Laminopathies are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina. Since the first reports of laminopathies in the late 1990s, increased research efforts have started to uncover the vital role of nuclear envelope proteins in cell and tissue integrity in animals. Laminopathies are a group of degenerative diseases, other disorders associated with inner nuclear membrane proteins are known as nuclear envelopathies.

<span class="mw-page-title-main">FLNB</span> Protein-coding gene in the species Homo sapiens

Filamin B, beta (FLNB), also known as Filamin B, beta , is a cytoplasmic protein which in humans is encoded by the FLNB gene.

<span class="mw-page-title-main">Delta-sarcoglycan</span> Mammalian protein found in Homo sapiens

Delta-sarcoglycan is a protein that in humans is encoded by the SGCD gene.

<span class="mw-page-title-main">Boomerang dysplasia</span> Medical condition

Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.

<span class="mw-page-title-main">Frontonasal dysplasia</span> Medical condition

Frontonasal dysplasia (FND) is a congenital malformation of the midface. For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism, a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele or V-shaped hair pattern on the forehead. The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.

<span class="mw-page-title-main">EEM syndrome</span> Medical condition

EEM syndrome is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm, and also the hands, feet and eyes.

<span class="mw-page-title-main">Gerodermia osteodysplastica</span> Medical condition

Gerodermia osteodysplastica (GO) is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.

<span class="mw-page-title-main">Marshall syndrome</span> Medical condition

Marshall syndrome is a genetic disorder of the connective tissue that can cause hearing loss. The three most common areas to be affected are the eyes, which are uncommonly large, joints and the mouth and facial structures. Marshall syndrome and Stickler syndrome closely resemble each other; in fact they are so similar, some say they are the same. The condition is named for D. Weber.

<span class="mw-page-title-main">Fryns syndrome</span> Medical condition

Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.

<span class="mw-page-title-main">Sensenbrenner syndrome</span> Medical condition

Sensenbrenner syndrome is a rare multisystem disease first described by Judith A. Sensenbrenner in 1975. It is inherited in an autosomal recessive fashion, and a number of genes appear to be responsible. Three genes responsible have been identified: intraflagellar transport (IFT)122 (WDR10), IFT43—a subunit of the IFT complex A machinery of primary cilia, and WDR35

<span class="mw-page-title-main">Ischiopatellar dysplasia</span> Medical condition

Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet. It is also known as small patella syndrome, with earlier synonyms being Scott-Taor syndrome, Coxo-podo-patellar syndrome, Patella aplasia, coxa vara, tarsal synostosis, Congenital coxa vara, patella aplasia and tarsal synostosis ischiocoxopodopatellar syndrome.

<span class="mw-page-title-main">Severe achondroplasia with developmental delay and acanthosis nigricans</span> Medical condition

Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) is a very rare genetic disorder. This disorder is one that affects bone growth and is characterized by skeletal, brain, and skin abnormalities. Those affected by the disorder are severely short in height and commonly possess shorter arms and legs. In addition, the bones of the legs are often bowed and the affected have smaller chests with shorter rib bones, along with curved collarbones. Other symptoms of the disorder include broad fingers and extra folds of skin on the arms and legs. Developmentally, many individuals who suffer from the disorder show a higher level in delays and disability. Seizures are also common due to structural abnormalities of the brain. Those affected may also suffer with apnea, the slowing or loss of breath for short periods of time.

Cousin syndrome is a genetic condition characterized by short stature at birth, a short neck with low-positioned external ears, as well as congenital malformations of the skeletal system affecting the shoulders, the pelvis, the neck, and the limbs. The condition determines physical disability, particularly affecting deambulation, and hearing loss while intelligence is not affected.

<span class="mw-page-title-main">Spondyloenchondrodysplasia</span> Medical condition

Spondyloenchondrodysplasia is the medical term for a rare spectrum of symptoms that are inherited following an autosomal recessive inheritance pattern. Skeletal anomalies are the usual symptoms of the disorder, although its phenotypical nature is highly variable among patients with the condition, including symptoms such as muscle spasticity or thrombocytopenia purpura. It is a type of immunoosseous dysplasia.

References

  1. Cooper HA, Crowe J, Butler MG (2000) Sponastrime dysplasia: report of an 11-year-old boy and review of the literature. Am J Med Genet 92: 33-39
  2. Gripp KW, Johnson C, Scott CI, Jr, Nicholson L, Bober M, Butler MG, Shaw L, Gorlin RJ (2008) Expanding the phenotype of SPONASTRIME dysplasia to include short dental roots, hypogammaglobulinemia, and cataracts. Am J Med Genet 146A: 468-473
  3. Langer LO Jr, Beals RK, LaFranchi S, Scott CI, Jr, Sockalosky JJ (1996) Sponastrime dysplasia: five new cases and review of nine previously published cases. Am J Med Genet 63: 20-27. Note: Erratum: Am. J Med Genet 65: 94 only 1996
  4. Slaney SF, Hall CM, Atherton DJ, Winter RM (1999) A new syndrome of spondyloepimetaphyseal dysplasia, eczema and hypogammaglobulinaemia. Clin Dysmorph 8: 79-85
  5. Chang HR, Cho SY, Lee JH, Lee E, Seo J, Lee HR, Cavalcanti DP, Mäkitie O, Valta H, Girisha KM, Lee C, Neethukrishna K, Bhavani GS, Shukla A, Nampoothiri S, Phadke SR, Park MJ, Ikegawa S, Wang Z, Higgs MR, Stewart GS, Jung E, Lee MS, Park JH, Lee EA, Kim H, Myung K, Jeon W, Lee K, Kim D, Kim OH, Choi M, Lee HW, Kim Y, Cho TJ (2019) Hypomorphic Mutations in TONSL Cause SPONASTRIME Dysplasia. Am J Hum Genet 104(3):439-453
  6. Burrage LC, Reynolds JJ, Baratang NV, Phillips JB, Wegner J, McFarquhar A, Higgs MR, Christiansen AE, Lanza DG, Seavitt JR, Jain M, Li X, Parry DA, Raman V, Chitayat D, Chinn IK, Bertuch AA, Karaviti L, Schlesinger AE, Earl D, Bamshad M, Savarirayan R, Doddapaneni H, Muzny D, Jhangiani SN, Eng CM, Gibbs RA, Bi W, Emrick L, Rosenfeld JA, Postlethwait J, Westerfield M, Dickinson ME, Beaudet AL, Ranza E, Huber C, Cormier-Daire V, Shen W, Mao R, Heaney JD, Orange JS; University of Washington Center for Mendelian Genomics; Undiagnosed Diseases Network, Bertola D, Yamamoto GL, Baratela WAR, Butler MG, Ali A, Adeli M30, Cohn DH31, Krakow D32, Jackson AP33, Lees M, Offiah AC, Carlston CM, Carey JC, Stewart GS, Bacino CA, Campeau PM, Lee B (2019) Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. Am J Hum Genet 104(3):422-438
  7. O'Donnell L, Panier S, Wildenhain J, Tkach JM, Al-Hakim A, Landry MC, Escribano-Diaz C, Szilard RK, Young JT, Munro M, Canny MD, Kolas NK, Zhang W, Harding SM, Ylanko J, Mendez M, Mullin M, Sun T, Habermann B, Datti A, Bristow RG, Gingras AC, Tyers MD, Brown GW, Durocher D (2010) The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Mol Cell 40(4):619-631
  8. Fanconi CI, Giedion A, Prader A. (1983) The Sponastrime dysplasia: familial short-limb dwarfism with saddle nose, spinal alterations and metaphyseal striation. Helv Paediat Acta 38:267-280