Stand-alone power system

Last updated
Schematics of a hybrid system Hybrid Power System.gif
Schematics of a hybrid system

A stand-alone power system (SAPS or SPS), also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of electricity generation, energy storage, and regulation.

Contents

Electricity is typically generated by one or more of the following methods:

Storage is typically implemented as a battery bank, but other solutions exist including fuel cells. Power drawn directly from the battery will be direct current extra-low voltage (DC ELV), and this is used especially for lighting as well as for DC appliances. An inverter is used to generate AC low voltage, which more typical appliances can be used with.

A typical stand-alone solar PV system at a sewage treatment plant in Santuari de Lluc, Spain Depuradora de Lluc.JPG
A typical stand-alone solar PV system at a sewage treatment plant in Santuari de Lluc, Spain

Stand-alone photovoltaic power systems are independent of the utility grid and may use solar panels only or may be used in conjunction with a diesel generator, a wind turbine or batteries. [1] [2]

Types

The two types of stand-alone photovoltaic power systems are direct-coupled system without batteries and stand alone system with batteries.

Direct-coupled system

The basic model of a direct coupled system consists of a solar panel connected directly to a dc load. As there are no battery banks in this setup, energy is not stored and hence it is capable of powering common appliances like fans, pumps etc. only during the day. MPPTs are generally used to efficiently utilize the Sun's energy especially for electrical loads like positive-displacement water pumps. Impedance matching is also considered as a design criterion in direct-coupled systems. [1] [3]

Stand alone system with batteries

Schematic of a stand-alone PV system with battery and charger PV-system country home1.png
Schematic of a stand-alone PV system with battery and charger

In stand-alone photovoltaic power systems, the electrical energy produced by the photovoltaic panels cannot always be used directly. As the demand from the load does not always equal the solar panel capacity, battery banks are generally used. The primary functions of a storage battery in a stand-alone PV system are:

Hybrid system

The hybrid power plant is a complete electrical power supply system that can be easily configured to meet a broad range of remote power needs. There are three basic elements to the system - the power source, the battery, and the power management center. Sources for hybrid power include wind turbines, diesel engine generators, thermoelectric generators and solar PV systems. The battery allows autonomous operation by compensating for the difference between power production and use. The power management center regulates power production from each of the sources, controls power use by classifying loads, and protects the battery from service extremes. [5] [6]

System monitoring

Monitoring photovoltaic systems can provide useful information about their operation and what should be done to improve performance, but if the data are not reported properly, the effort is wasted. To be helpful, a monitoring report must provide information on the relevant aspects of the operation in terms that are easily understood by a third party. Appropriate performance parameters need to be selected, and their values consistently updated with each new issue of the report. In some cases it may be beneficial to monitor the performance of individual components in order to refine and improve system performance, or be alerted to loss of performance in time for preventative action. For example, monitoring battery charge/discharge profiles will signal when replacement is due before downtime from system failure is experienced. [7]

IEC standard 61724

IEC has provided a set of monitoring standards called the "Standard for Photovoltaic system performance monitoring" (IEC 61724). It focusses on the photovoltaic system's electrical performance and it does not address hybrids or prescribe a method for ensuring that performance assessments are equitable. [8]

Performance assessment

Performance assessment involves:

The wide range of load related problems identified are classified into the following types:

See also

Related Research Articles

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels. The on-battery run-time of most uninterruptible power sources is relatively short but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system.

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Solar inverter</span> Converts output of a photovoltaic panel into a utility frequency alternating current

A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

A microgrid is a local electrical grid with defined electrical boundaries, acting as a single and controllable entity. It is able to operate in grid-connected and in island mode. A 'Stand-alone microgrid' or 'isolated microgrid' only operates off-the-grid and cannot be connected to a wider electric power system.

<span class="mw-page-title-main">Microgeneration</span> Small-scale heating and electric power creation

Microgeneration is the small-scale production of heat or electric power from a "low carbon source," as an alternative or supplement to traditional centralized grid-connected power.

<span class="mw-page-title-main">Maximum power point tracking</span> Solar cell power extraction method

Maximum power point tracking (MPPT) or sometimes just power point tracking (PPT), is a technique used with variable power sources to maximize energy extraction as conditions vary. The technique is most commonly used with photovoltaic (PV) solar systems, but can also be used with wind turbines, optical power transmission and thermophotovoltaics.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electrical power

A solar cell panel, solar electric panel, or solar panel, also known as a photo-voltaic (PV) module or PV panel, is an assembly of photovoltaic solar cells mounted in a frame. Solar panels capture sunlight as a source of radiant energy, which is converted into electric energy in the form of direct current (DC) electricity.

<span class="mw-page-title-main">Solar-powered pump</span> Pump that uses solar energy

Solar-powered pumps run on electricity generated by photovoltaic (PV) panels or the radiated thermal energy available from collected sunlight as opposed to grid electricity- or diesel-run water pumps. Generally, solar-powered pumps consist of a solar panel array, solar charge controller, DC water pump, fuse box/breakers, electrical wiring, and a water storage tank. The operation of solar-powered pumps is more economical mainly due to the lower operation and maintenance costs and has less environmental impact than pumps powered by an internal combustion engine. Solar pumps are useful where grid electricity is unavailable or impractical, and alternative sources do not provide sufficient energy.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

A grid-tied electrical system, also called tied to grid or grid tie system, is a semi-autonomous electrical generation or grid energy storage system which links to the mains to feed excess capacity back to the local mains electrical grid. When insufficient electricity is available, electricity drawn from the mains grid can make up the shortfall. Conversely when excess electricity is available, it is sent to the main grid. When the Utility or network operator restricts the amount of energy that goes into the grid, it is possible to prevent any input into the grid by installing Export Limiting devices.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.

A power optimizer is a DC to DC converter technology developed to maximize the energy harvest from solar photovoltaic or wind turbine systems. They do this by individually tuning the performance of the panel or wind turbine through maximum power point tracking, and optionally tuning the output to match the performance of the string inverter. Power optimizers are especially useful when the performance of the power generating components in a distributed system will vary widely, such as due to differences in equipment, shading of light or wind, or being installed facing different directions or widely separated locations.

<span class="mw-page-title-main">Rooftop solar power</span>

A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories.

<span class="mw-page-title-main">Grid-connected photovoltaic power system</span>

A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power conditioning unit and grid connection equipment. They range from small residential and commercial rooftop systems to large utility-scale solar power stations. When conditions are right, the grid-connected PV system supplies the excess power, beyond consumption by the connected load, to the utility grid.

Solar energy – radiant light and heat from the sun. It has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems that the world now faces.

Enphase Energy, Inc. is an American energy technology company headquartered in Fremont, California, that develops and manufactures solar micro-inverters, battery energy storage, and EV charging stations primarily for residential customers. Enphase was established in 2006 and is the first company to successfully commercialize the solar micro-inverter, which converts the direct current (DC) power generated by a solar panel into grid-compatible alternating current (AC) for use or export. The company has shipped more than 48 million microinverters to 2.5 million solar systems in more than 140 countries.

<span class="mw-page-title-main">Battery storage power station</span> Energy storage system using electrochemical secondary cells

A battery storage power station is a type of energy storage power station that uses a group of batteries to store electrical energy. Battery storage is the fastest responding dispatchable source of power on electric grids, and it is used to stabilise those grids, as battery storage can transition from standby to full power in under a second to deal with grid contingencies.

<span class="mw-page-title-main">Photovoltaic system performance</span>

Photovoltaic system performance is a function of the climatic conditions, the equipment used and the system configuration. PV performance can be measured as the ratio of actual solar PV system output vs expected values, the measurement being essential for proper solar PV facility's operation and maintenance. The primary energy input is the global light irradiance in the plane of the solar arrays, and this in turn is a combination of the direct and the diffuse radiation.

A mini-grid is an aggregation of loads and one or more energy sources operating as a single system providing electric power and possibly heat isolated from a main power grid. A modern mini-grid may include renewable and fossil fuel-based generation, energy storage, and load control. A mini grid can be fully isolated from the main grid or interconnected to it. If it is interconnected to the main grid, it must also be able to isolate (“island”) from the main grid and continue to serve its customers while operating in an island or autonomous mode. Mini-grids are used as a cost-effective solution for electrifying rural communities where a grid connection is challenging in terms of transmission and cost for the end user population density, with mini grids often used to electrify rural communities of a hundred or more households that are 10 km or more from the main grid.

References

  1. 1 2 "Stand-Alone Photovoltaic Systems". renewable-energy-sources.com. Archived from the original on 2011-07-13. Retrieved 2011-07-21.
  2. "A STAND-ALONE PHOTOVOLTAIC SYSTEM, CASE STUDY: A RESIDENCE IN GAZA" (PDF). trisanita.org. Archived from the original (PDF) on 2012-04-26. Retrieved 2011-07-21.
  3. "Stand Alone PV Systems". eai.in. Retrieved 2011-07-21.
  4. "SBatteries and Charge Control in Stand-Alone Photovoltaic Systems-Fundamentals and Application" (PDF). localenergy.org. Retrieved 2011-07-21.
  5. Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2: 79. doi: 10.3389/fchem.2014.00079 . PMC   4174133 . PMID   25309898.
  6. Ginn, Claire (8 September 2016). "Energy pick n' mix: are hybrid systems the next big thing?". www.csiro.au. CSIRO. Retrieved 9 September 2016.
  7. 1 2 "Guidelines for Monitoring Stand-Alone Photovoltaic Systems: Methodology and Equipment". iea-pvps.org. Retrieved 2011-07-21.
  8. "Photovoltaic system performance monitoring – Guidelines for measurement, data exchange and analysis". IEC Standard 61724, Geneva: 37. 1998.
  9. "Use of appliances in Stand-Alone PV Power supply systems: problems and solutions". iea-pvps.org. Retrieved 2011-07-21.