Starwisp

Last updated

Starwisp is a hypothetical unmanned interstellar probe design proposed by the late Robert L. Forward. It is propelled by a microwave sail, similar to a solar sail in concept, but powered by microwaves from a human-made source. It would fly through the target system without slowing down.

Contents

Description

"Starwisp" is a concept for an ultra-low-mass interstellar probe pushed by a microwave beam. It was proposed by scientist and author Robert L. Forward in 1985, [1] and further work was published by Geoffrey A. Landis in 2000. [2] The proposed device uses beam-powered propulsion in the form of a high-power microwave antenna pushing a sail. The probe itself would consist of a mesh of extremely fine carbon wires about 100 m across, with the wires spaced the same distance apart as the 3 mm wavelength of the microwaves that will be used to push it.

Forward proposed that the wires would incorporate nanoscale computer circuitry, sensors, microwave power collection systems and microwave radio transmitters fabricated on the wire surfaces, giving the probe data collection and transmission capability. Being distributed across the entire sail, no "rigging" is needed, as would be the case if the mission electronics were placed in a separate probe that was pulled by the sail.

The original Starwisp concept assumed that the microwaves would be efficiently reflected, with the wire mesh surface acting as a superconductor and nearly perfectly efficient mirror. This assumption is not valid. Landis showed that a grid will absorb a significant fraction of the power incident on it, and therefore cannot stay cool enough to be superconducting. The design is thermally limited, hence the use of carbon as the material in Landis's concept.

Low mass was the key feature of the Starwisp probe. In Landis's calculations, the mesh has a density of only 100 kg/km2, for a total mass of 1 kg, plus a payload of 80 grams.

Although the diffraction limit severely constrains the range of the transmitting antenna, the probe is designed to have an acceleration of 24 m/s2, so that it can reach a significant fraction of the speed of light within a very short distance, before passing out of range. The antenna uses a microwave lens 560 km in diameter, would transmit 56 GW of power, and would accelerate the probe to 10% of the speed of light.

The probe would cruise without power for decades until it finally approached the target star, at which point the antenna which launched it would again target its beam on Starwisp. This would be done when the Starwisp was about 80% of the way to its destination, so that the beam and Starwisp would arrive there at the same time. At such extreme long range the antenna would be unable to provide any propulsion, but Starwisp would be able to use its wire sail to collect and convert some of the microwave energy into electricity to operate its sensors and transmit the data it collects back home. Starwisp would not slow down at the target star, performing a high-speed flyby mission instead.

Since the antenna is only required for a few days at Starwisp's launch and again for another few days several decades later to power it while it passes its target, Starwisp probes might be mass-produced and launched by the maser every few days. In this manner, a continuous stream of data could be collected about distant solar systems even though any given Starwisp probe only spends a few days travelling through it. Alternatively, the launching transmitter could be used in the interim to transmit power to Earth for commercial use, as with a solar power satellite.

Possible methods of fabrication

Constructing such a delicate probe would be a significant challenge. One proposed method would be to "paint" the probe and its circuitry onto an enormous sheet of plastic which degrades when exposed to ultraviolet light, and then wait for the sheet to evaporate away under the assault of solar UV after it has been deployed in space.

Another proposed method noted that the Starwisp probe wires were of the same physical scale as wires and circuit elements on modern computer microchips and could be produced by the same photolithographic fabrication technologies as those of computer chips. The probe would have to be built in sections the size of current chip fabrication silicon wafers and then connected together.

Technical problems

A major problem this design would face would be the radiation encountered en route. Travelling at 20% of light speed, ordinary interstellar hydrogen would become a significant radiation hazard, and the Starwisp would be without shielding and likely without active self-repair capability. Another problem would be keeping the acceleration of the Starwisp uniform enough across its sail area so that its delicate wires would not tear or be twisted out of shape. Distorting the shape of the Starwisp even slightly could result in a runaway catastrophe, since one portion of the Starwisp would be reflecting microwaves in a different direction than the other portion and be thrust even farther out of shape. Such delicate and finely-balanced control may prove impossible to realize.

The possibility of using a dusty plasma sail [ citation needed ] in which a dusty substance that is maintained as a plasma within space is responsible for the reflection of electromagnetic radiation could circumvent problems associated with radiation damage to the medium responsible for the transfer of radiation pressure (the dusty plasma sail might not be as easy to damage as a thin film or the like). Dusty plasma sails can also adapt their three-dimensional structure in real time to ensure reflection perpendicular to any incident light/microwave beam.

In fiction

See also

Related Research Articles

<span class="mw-page-title-main">Interstellar travel</span> Hypothetical travel between stars or planetary systems

Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast difference in the scale of the involved distances. Whereas the distance between any two planets in the Solar System is less than 55 astronomical units (AU), stars are typically separated by hundreds of thousands of AU, causing these distances to typically be expressed instead in light-years. Because of the vastness of these distances, non-generational interstellar travel based on known physics would need to occur at a high percentage of the speed of light; even so, travel times would be long, at least decades and perhaps millennia or longer.

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths ranging from about 30 centimeters to one millimeter corresponding to frequencies between 1 GHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes UHF, SHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

<span class="mw-page-title-main">Solar sail</span> Space propulsion method using Sun radiation

Solar sails are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigation have been proposed since the 1980s. The first spacecraft to make use of the technology was IKAROS, launched in 2010.

Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters and light sails, whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines.

<span class="mw-page-title-main">Antimatter rocket</span> Rockets using antimatter as their power source

An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.

<span class="mw-page-title-main">Voyager program</span> Ongoing NASA interstellar program

The Voyager program is an American scientific program that employs two robotic interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission back to Earth. After launch, the decision was made to send Voyager 2 near Uranus and Neptune to collect data for transmission back to Earth.

<span class="mw-page-title-main">Laser propulsion</span> Form of beam-powered propulsion

Laser propulsion is a form of beam-powered propulsion where the energy source is a remote laser system and separate from the reaction mass. This form of propulsion differs from a conventional chemical rocket where both energy and reaction mass come from the solid or liquid propellants carried on board the vehicle.

<span class="mw-page-title-main">Wireless power transfer</span> Transmission of electrical energy without wires as a physical link

Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

<span class="mw-page-title-main">Project Daedalus</span> 1970s proposal for a large fusion powered unmanned interstellar probe

Project Daedalus was a study conducted between 1973 and 1978 by the British Interplanetary Society to design a plausible uncrewed interstellar probe. Intended mainly as a scientific probe, the design criteria specified that the spacecraft had to use existing or near-future technology and had to be able to reach its destination within a human lifetime. Alan Bond led a team of scientists and engineers who proposed using a fusion rocket to reach Barnard's Star 5.9 light years away. The trip was estimated to take 50 years, but the design was required to be flexible enough that it could be sent to any other target star.

MagBeam is the name given to an ion propulsion system for space travel initially proposed by Professor Robert Winglee of the Earth and Space Sciences Department at the University of Washington for the October 2004 meeting of the NIAC. MagBeam is different from a traditional electrostatic ion thruster in several ways, the primary one being that instead of the fuel and propulsion system being part of the payload craft, they are instead located on a platform held in orbit. It has also been suggested that the technology could be used to reduce the amount of space debris in orbit around Earth.

<span class="mw-page-title-main">Interstellar probe</span> Space probe that can travel out of the Solar System

An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.

<span class="mw-page-title-main">NASA Institute for Advanced Concepts</span> NASA program

The NASA Institute for Advanced Concepts (NIAC) is a NASA program for development of far reaching, long term advanced concepts by "creating breakthroughs, radically better or entirely new aerospace concepts". The program operated under the name NASA Institute for Advanced Concepts from 1998 until 2007, and was reestablished in 2011 under the name NASA Innovative Advanced Concepts and continues to the present. The NIAC program funds work on revolutionary aeronautics and space concepts that can dramatically impact how NASA develops and conducts its missions.

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">Space-based solar power</span> Concept of collecting solar power in outer space and distributing it to Earth

Space-based solar power is the concept of collecting solar power in outer space with solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection and absorption by the atmosphere, the possibility of very little night, and a better ability to orient to face the Sun. Space-based solar power systems convert sunlight to some other form of energy which can be transmitted through the atmosphere to receivers on the Earth's surface.

<span class="mw-page-title-main">Electric sail</span> Proposed spacecraft propulsion device

An electric sail is a proposed form of spacecraft propulsion using the dynamic pressure of the solar wind as a source of thrust. It creates a "virtual" sail by using small wires to form an electric field that deflects solar wind protons and extracts their momentum. The idea was first conceptualised by Pekka Janhunen in 2006 at the Finnish Meteorological Institute.

The thinned-array curse is a theorem in electromagnetic theory of antennas. It states that a transmitting antenna which is synthesized from a coherent phased array of smaller antenna apertures that are spaced apart will have a smaller minimum beam spot size, but the amount of power that is beamed into this main lobe is reduced by an exactly proportional amount, so that the total power density in the beam is constant.

<span class="mw-page-title-main">Interstellar Probe (1999)</span> 1999 NASA space probe concept

Interstellar Probe is the name of a 1999 space probe concept by NASA intended to travel out 200 AU in 15 years. This 1999 study by Jet Propulsion Laboratory is noted for its circular 400-meter-diameter solar sail as a propulsion method combined with a 0.25 AU flyby of the Sun to achieve higher solar light pressure, after which the sail is jettisoned at 5 AU distance from the Sun.

<span class="mw-page-title-main">Breakthrough Starshot</span> Interstellar probe project

Breakthrough Starshot is a research and engineering project by the Breakthrough Initiatives to develop a proof-of-concept fleet of light sail interstellar probes named Starchip, to be capable of making the journey to the Alpha Centauri star system 4.34 light-years away. It was founded in 2016 by Yuri Milner, Stephen Hawking, and Mark Zuckerberg.

Project Starlight is a research project of the University of California, Santa Barbara to develop a fleet of laser beam-propelled interstellar probes and sending them to a star neighboring the Solar System, potentially Alpha Centauri. The project aims to send organisms on board the probe.

A plasma magnet is a proposed spacecraft propulsion device that uses a dipole magnetic field to capture energy from the solar wind. The field acts as a sail, using the captured energy to propel the spacecraft analogously to how the wind propels a sailing vessel. It could accelerate a vessel moving away from the sun and decelerate it when approaching a distant star at the end of an interstellar journey. Thrust vectoring and steering could be achieved by manipulating the dipole tilt for any type of magnetic sail.

References

  1. Forward, Robert (May–June 1985). "Starwisp: an Ultralight Interstellar Probe". American Institute of Aeronautics and Astronautics Journal of Spacecraft and Rockets. 22.
  2. Landis, Geoffrey A. "Microwave Pushed Interstellar Sail: Starwisp Revisited" (paper AIAA-2000-3337, presented at the AIAA 36th Joint Propulsion Conference and Exhibit, Huntsville AL, July 17–19, 2000).
  3. Forward, Robert (December 1990). "Fade to Black". Analog .