Stefan Hüfner

Last updated • 5 min readFrom Wikipedia, The Free Encyclopedia
Stefan Hüfner
Born(1935-07-02)July 2, 1935
DiedJanuary 17, 2013(2013-01-17) (aged 77)
Education University of Frankfurt
Technical University of Darmstadt
Known for Photoemission spectroscopy
Scientific career
Institutions Technical University of Darmstadt
Bell Labs
Free University of Berlin
Saarland University
Doctoral advisor Karl-Heinz Hellwege
Doctoral students Peter Grünberg
Michael Loewenhaupt

Stefan Hüfner (July 2, 1935, in Löwenberg, Silesia – January 17, 2013, in Saarbrücken, Saarland) was a German experimental physicist specialized in solid-state physics and photoemission spectroscopy. [1]

Contents

Education and career

Hüfner studied mathematics and physics at the Goethe University of Frankfurt and the Technical University of Darmstadt. After graduating from 1960 to 1966, he was a scientific assistant at the Institute for Technical Physics at the TU Darmstadt. In 1963 he received his doctorate there, supervised by Karl-Heinz Hellwege. In 1966 he obtained habilitation in physics. He was a guest researcher at the Technical University of Munich and at the Bell Telephone Laboratories in Murray Hill, N.Y., USA. From 1967 to 1968 he was a privatdozent at the TU Darmstadt and the doctoral supervisor of Peter Grünberg, who was awarded the Nobel Prize in Physics in 2007.

In 1968 he received a call to the professorship for experimental physics at the Free University of Berlin as the successor to Professor Gerhard Simonsohn. In 1975, Hüfner moved to the professorship for experimental physics at Saarland University. In 1994 he became founding speaker of the Collaborative Research Center "Interface-determined Materials". In 2001 he took over the office of university vice president for planning and strategy, which he held until the beginning of 2003. In September 2003 he retired. [2]

Honors and awards

Hüfner was an emeritus member of the advisory board of the Max Planck Institute for Nuclear Physics in Heidelberg, the Max Planck Institute for Physics in Munich, the Max Planck Institute for Plasma Physics in Greifswald and Munich and the Max Planck Institute for Quantum Optics in Munich and other advisory boards of the Max Planck Society. Since 2004 he has been a member and chairman of the Technical Committee for Engineering Sciences of the Elite Network of Bavaria. In 2006/2007 he was a visiting professor at the University of British Columbia in Vancouver, Canada.

He received honorary doctorates from the University of Fribourg and the Free University of Berlin. [3]

Works

Hüfner authored the classic textbook on photoemission spectroscopy, first published in 1995 and has gone through three editions in total.

In addition to numerous scientific publications, Hüfner has also written several novels, including Der Tote von Dresden (Conte Verlag 2004, ISBN   978-3-936950-49-6) and Artikel eins. Ein Zukunftsroman (Conte Verlag 2006, ISBN   978-3-936950-41-0). [4] [5]

Bibliography

Textbooks and monographs

Fictions

Reviews

See also

Related Research Articles

<span class="mw-page-title-main">Photoelectric effect</span> Emission of electrons when electromagnetic radiation hits a material

The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

<span class="mw-page-title-main">X-ray photoelectron spectroscopy</span> Spectroscopic technique

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique that measures the very topmost 200 atoms, 0.01 um, 10 nm of any surface. It belongs to the family of photoemission spectroscopies in which electron population spectra are obtained by irradiating a material with a beam of X-rays. XPS is based on the photoelectric effect that can identify the elements that exist within a material or are covering its surface, as well as their chemical state, and the overall electronic structure and density of the electronic states in the material. XPS is a powerful measurement technique because it not only shows what elements are present, but also what other elements they are bonded to. The technique can be used in line profiling of the elemental composition across the surface, or in depth profiling when paired with ion-beam etching. It is often applied to study chemical processes in the materials in their as-received state or after cleavage, scraping, exposure to heat, reactive gasses or solutions, ultraviolet light, or during ion implantation.

<span class="mw-page-title-main">Wilhelm Wien</span> German physicist (1864–1928)

Wilhelm Carl Werner Otto Fritz Franz Wien was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.

<span class="mw-page-title-main">Photoemission spectroscopy</span> Examining a substance by measuring electrons emitted in the photoelectric effect

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, refers to energy measurement of electrons emitted from solids, gases or liquids by the photoelectric effect, in order to determine the binding energies of electrons in the substance. The term refers to various techniques, depending on whether the ionization energy is provided by X-ray, XUV or UV photons. Regardless of the incident photon beam, however, all photoelectron spectroscopy revolves around the general theme of surface analysis by measuring the ejected electrons.

Photoemission electron microscopy is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

Inverse photoemission spectroscopy (IPES) is a surface science technique used to study the unoccupied electronic structure of surfaces, thin films, and adsorbates. A well-collimated beam of electrons of a well defined energy is directed at the sample. These electrons couple to high-lying unoccupied electronic states and decay to low-lying unoccupied states, with a subset of these transitions being radiative. The photons emitted in the decay process are detected and an energy spectrum, photon counts vs. incident electron energy, is generated. Due to the low energy of the incident electrons, their penetration depth is only a few atomic layers, making inverse photoemission a particularly surface sensitive technique. As inverse photoemission probes the electronic states above the Fermi level of the system, it is a complementary technique to photoemission spectroscopy.

<span class="mw-page-title-main">Detlev Buchholz</span> German physicist

Detlev Buchholz is a German theoretical physicist. He investigates quantum field theory, especially in the axiomatic framework of algebraic quantum field theory.

The De Haas–Van Alphen effect, often abbreviated to DHVA, is a quantum mechanical effect in which the magnetic susceptibility of a pure metal crystal oscillates as the intensity of the magnetic field B is increased. It can be used to determine the Fermi surface of a material. Other quantities also oscillate, such as the electrical resistivity, specific heat, and sound attenuation and speed. It is named after Wander Johannes de Haas and his student Pieter M. van Alphen. The DHVA effect comes from the orbital motion of itinerant electrons in the material. An equivalent phenomenon at low magnetic fields is known as Landau diamagnetism.

<span class="mw-page-title-main">Angle-resolved photoemission spectroscopy</span> Experimental technique to determine the distribution of electrons in solids

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of sufficient energy ejects an electron from the surface of a material. By directly measuring the kinetic energy and emission angle distributions of the emitted photoelectrons, the technique can map the electronic band structure and Fermi surfaces. ARPES is best suited for the study of one- or two-dimensional materials. It has been used by physicists to investigate high-temperature superconductors, graphene, topological materials, quantum well states, and materials exhibiting charge density waves.

Ultraviolet photoelectron spectroscopy (UPS) refers to the measurement of kinetic energy spectra of photoelectrons emitted by molecules that have absorbed ultraviolet photons, in order to determine molecular orbital energies in the valence region.

The Planck constant, or Planck's constant, denoted by , is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum. The closely related reduced Planck constant, equal to and denoted is commonly used in quantum physics equations.

Stephan W. Koch was a German theoretical physicist. He was a professor at the University of Marburg and works on condensed-matter theory, many-body effects, and laser theory. He is best known for his seminal contributions to the optical and electronic properties of semiconductors, semiconductor quantum optics, and semiconductor laser designs. Major portion of his research work has focused on the quantum physics and application potential of semiconductor nanostructures. Besides gaining fundamental insights to the many-body quantum theory, his work has provided new possibilities to develop, e.g., laser technology, based on accurate computer simulations. His objective has been to self-consistently include all relevant many-body effects in order to eliminate phenomenological approximations that compromise predictability of effects and quantum-device designs.

<span class="mw-page-title-main">Two-photon photoelectron spectroscopy</span>

Time-resolved two-photon photoelectron (2PPE) spectroscopy is a time-resolved spectroscopy technique which is used to study electronic structure and electronic excitations at surfaces. The technique utilizes femtosecond to picosecond laser pulses in order to first photoexcite an electron. After a time delay, the excited electron is photoemitted into a free electron state by a second pulse. The kinetic energy and the emission angle of the photoelectron are measured in an electron energy analyzer. To facilitate investigations on the population and relaxation pathways of the excitation, this measurement is performed at different time delays.

Hrvoje Petek is a Croatian-born American physicist and the Richard King Mellon Professor of Physics and Astronomy, at the University of Pittsburgh, where he is also a professor of chemistry.

<i>Lectures on Theoretical Physics</i> Series of textbooks by Arnold Sommerfeld

Lectures on Theoretical Physics is a six-volume series of physics textbooks translated from Arnold Sommerfeld's classic German texts Vorlesungen über Theoretische Physik. The series includes the volumes Mechanics, Mechanics of Deformable Bodies, Electrodynamics, Optics, Thermodynamics and Statistical Mechanics, and Partial Differential Equations in Physics. Focusing on one subject each semester, the lectures formed a three-year cycle of courses that Sommerfeld repeatedly taught at the University of Munich for over thirty years. Sommerfeld's lectures were famous and he was held to be one of the greatest physics lecturers of his time.

In physics and chemistry, photoemission orbital tomography is a combined experimental / theoretical approach which was initially developed to reveal information about the spatial distribution of individual one-electron surface-state wave functions and later extended to study molecular orbitals. Experimentally, it uses angle-resolved photoemission spectroscopy (ARPES) to obtain constant binding energy photoemission angular distribution maps. In their pioneering work, Mugarza et al. in 2003 used a phase-retrieval method to obtain the wave function of electron surface states based on ARPES data acquired from stepped gold crystalline surfaces; they obtained the respective wave functions and, upon insertion into the Schrödinger equation, also the binding potential. More recently, photoemission maps, also known as tomograms, have been shown to reveal information about the electron probability distribution in molecular orbitals. Theoretically, one rationalizes these tomograms as hemispherical cuts through the molecular orbital in momentum space. This interpretation relies on the assumption of a plane wave final state, i.e., the idea that the outgoing electron can be treated as a free electron, which can be further exploited to reconstruct real-space images of molecular orbitals on a sub-Ångström length scale in two or three dimensions. Presently, POT has been applied to various organic molecules forming well-oriented monolayers on single crystal surfaces or to two-dimensional materials.

<span class="mw-page-title-main">Lanthanum diiodide</span> Chemical compound

Lanthanum diiodide is an iodide of lanthanum, with the chemical formula of LaI2. It is an electride, actually having a chemical formula of La3+[(I)2e].

<span class="mw-page-title-main">Cerium diiodide</span> Chemical compound

Cerium diiodide is an iodide of cerium, with the chemical formula of CeI2.

Ludger Wöste is a German physicist and professor at the Free University of Berlin. He is known for research in laser control of chemistry and laser-based weather control through the creation of plasma channels by laser filamentation in air.

<span class="mw-page-title-main">Günther Rupprechter</span> Austrian scientist

Professor Günther Rupprechter is an Austrian scientist, full professor and currently Head of the Institute of Materials Chemistry, Technische Universität Wien. He has worked in physical chemistry, surface science, nanoscience and nanotechnology, particularly in the area of catalytic surface reactions on heterogeneous catalysts, identifying fundamental reaction steps at the atomic level by in situ and operando spectroscopy and microscopy.

References

  1. "Traueranzeigen von Stefan Hüfner | Saarbruecker-Zeitung.Trauer.de". saarbruecker-zeitung.trauer.de (in German). Retrieved 2022-05-11.
  2. "Der Fachbereich Physik". www.physik.fu-berlin.de (in German). 2008-09-08. Retrieved 2022-05-11.
  3. "Emeriti and Honorary Doctors". www.physik.fu-berlin.de. 2020-01-23. Retrieved 2022-05-12.
  4. "Stefan Hüfner obituary (in German)" (PDF).
  5. "Professor Hüfners Krimi "Der Tote von Dresden" im universitären Diskurs". idw-online.de. Retrieved 2022-05-11.