Steinmetz's equation

Last updated

Steinmetz's equation, sometimes called the power equation, [1] is an empirical equation used to calculate the total power loss (core losses) per unit volume in magnetic materials when subjected to external sinusoidally varying magnetic flux. [2] [3] The equation is named after Charles Steinmetz, a German-American electrical engineer, who proposed a similar equation without the frequency dependency in 1890. [4] [5] The equation is: [2] [3]

Contents

where is the time average power loss per unit volume in mW per cubic centimeter, is frequency in kilohertz, and is the peak magnetic flux density; , , and , called the Steinmetz coefficients, are material parameters generally found empirically from the material's B-H hysteresis curve by curve fitting. In typical magnetic materials, the Steinmetz coefficients all vary with temperature.

The energy loss, called core loss, is due mainly to two effects: magnetic hysteresis and, in conductive materials, eddy currents, which consume energy from the source of the magnetic field, dissipating it as waste heat in the magnetic material. The equation is used mainly to calculate core losses in ferromagnetic magnetic cores used in electric motors, generators, transformers and inductors excited by sinusoidal current. Core losses are an economically important source of inefficiency in alternating current (AC) electric power grids and appliances.

If only hysteresis is taken into account (à la Steinmetz), the coefficient will be close to 1 and will be 2 for nearly all modern magnetic materials. However, due to other nonlinearities, is usually between 1 and 2, and is between 2 and 3. The equation is a simplified form that only applies when the magnetic field has a sinusoidal waveform and does not take into account factors such as DC offset. However, because most electronics expose materials to non-sinusoidal flux waveforms, various improvements to the equation have been made. An improved generalized Steinmetz equation, often referred to as iGSE, can be expressed as [2] [3]

where is the flux density from peak to peak and is defined by

where , and are the same parameters used in the original equation. This equation can calculate losses with any flux waveform using only the parameters needed for the original equation, but it ignores the fact that the parameters, and therefore the losses, can vary under DC bias conditions. [4] DC bias cannot be neglected without severely affecting results, but there is still not a practical physically-based model that takes both dynamic and nonlinear effects into account. [6] However, this equation is still widely used because most other models require parameters that are not usually given by manufacturers and that engineers are not likely to take the time and resources to measure. [1]

The Steinmetz coefficients for magnetic materials may be available from the manufacturers. However, manufacturers of magnetic materials intended for high-power applications usually provide graphs that plot specific core loss (watts per volume or watts per weight) at a given temperature against peak flux density , with frequency as a parameter. Families of curves for different temperatures may also be given. These graphs apply to the case where the flux density excursion is ±. In cases where the magnetizing field has a DC offset or is unidirectional (i.e. ranges between zero and a peak value), core losses can be much lower but are rarely covered by published data.

See also

Related Research Articles

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Electrical impedance</span> Opposition of a circuit to a current when a voltage is applied

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

<span class="mw-page-title-main">Poynting vector</span> Measure of directional electromagnetic energy flux

In physics, the Poynting vector represents the directional energy flux or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m2); kg/s3 in base SI units. It is named after its discoverer John Henry Poynting who first derived it in 1884. Nikolay Umov is also credited with formulating the concept. Oliver Heaviside also discovered it independently in the more general form that recognises the freedom of adding the curl of an arbitrary vector field to the definition. The Poynting vector is used throughout electromagnetics in conjunction with Poynting's theorem, the continuity equation expressing conservation of electromagnetic energy, to calculate the power flow in electromagnetic fields.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Solenoid</span> Type of electromagnet formed by a coil of wire

A solenoid is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

<span class="mw-page-title-main">Magnetic circuit</span> Closed loop path containing a magnetic flux

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

<span class="mw-page-title-main">Magnetic core</span> Object used to guide and confine magnetic fields

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

<span class="mw-page-title-main">AC power</span> Power in alternating current systems

In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

<span class="mw-page-title-main">Nonlinear acoustics</span>

Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.

Vector control, also called field-oriented control (FOC), is a variable-frequency drive (VFD) control method in which the stator currents of a three-phase AC or brushless DC electric motor are identified as two orthogonal components that can be visualized with a vector. One component defines the magnetic flux of the motor, the other the torque. The control system of the drive calculates the corresponding current component references from the flux and torque references given by the drive's speed control. Typically proportional-integral (PI) controllers are used to keep the measured current components at their reference values. The pulse-width modulation of the variable-frequency drive defines the transistor switching according to the stator voltage references that are the output of the PI current controllers.

In an electric power system, a harmonic of a voltage or current waveform is a sinusoidal wave whose frequency is an integer multiple of the fundamental frequency. Harmonic frequencies are produced by the action of non-linear loads such as rectifiers, discharge lighting, or saturated electric machines. They are a frequent cause of power quality problems and can result in increased equipment and conductor heating, misfiring in variable speed drives, and torque pulsations in motors and generators.

The article Ferromagnetic material properties is intended to contain a glossary of terms used to describe ferromagnetic materials, and magnetic cores.

<span class="mw-page-title-main">Gyrator–capacitor model</span> Model for magnetic circuits

The gyrator–capacitor model - sometimes also the capacitor-permeance model - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model. The model makes permeance elements analogous to electrical capacitance rather than electrical resistance. Windings are represented as gyrators, interfacing between the electrical circuit and the magnetic model.

In electromagnetism and materials science, the Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. Jiles–Atherton model enables calculation of minor and major hysteresis loops. The original Jiles–Atherton model is suitable only for isotropic materials. However, an extension of this model presented by Ramesh et al. and corrected by Szewczyk enables the modeling of anisotropic magnetic materials.

References

  1. 1 2 Venkatachalam; et al. (2012). "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms Using Only Steinmetz Parameters" (PDF). Dartmouth College. Retrieved 2013-07-31.
  2. 1 2 3 Sudhoff, Scott D. (2014). Power Magnetic Devices: A Multi-Objective Design Approach. John Wiley and Sons. pp. 168–169. ISBN   978-1-118-82463-4.
  3. 1 2 3 Rashid, Muhammad H. (2017). Power Electronics Handbook, 4th Ed. Butterworth-Heinemann. p. 573. ISBN   978-0-12-811408-7.
  4. 1 2 J. Muhlethaler; J. Biela; J. W. Kolar; A. Ecklebe (February 2012). "Core Losses Under the DC Bias Condition Based on Steinmetz Parameters". IEEE Transactions on Power Electronics. 27 (2): 953. Bibcode:2012ITPE...27..953M. doi:10.1109/TPEL.2011.2160971. hdl: 20.500.11850/39067 . S2CID   47574741.
  5. Steinmetz, Charles P. (1892). "On the law of hysteresis". Trans. AIEE. 9 (2): 3–62. doi:10.1109/PROC.1984.12842. S2CID   51668510.
  6. Reinert, J.; Brockmeyer, A.; De Doncker, R.W. (1999). "Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation". Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370). Vol. 3. pp. 2087–92. doi:10.1109/IAS.1999.806023. ISBN   978-0-7803-5589-7. S2CID   108718180.