Stencil printing

Last updated

Stencil printing is the process of depositing solder paste on the printed wiring boards (PWBs) to establish electrical connections. It is immediately followed by the component placement stage. The equipment and materials used in this stage are a stencil, solder paste, and a printer.

Contents

The stencil printing function is achieved through a single material namely solder paste which consists of solder metal and flux. Paste also acts as an adhesive during component placement and solder reflow. The tackiness of the paste enables the components to stay in place. A good solder joint is one where the solder paste has melted well and flowed and wetted the lead or termination on the component and the pad on the board.

In order to achieve this kind of a solder joint, the component needs to be in the right place, the right volume of solder paste needs to be applied, the paste needs to wet well on the board and component, and there needs to be a residue that is either safe to leave on the board or one that can easily be cleaned.

The solder volume is a function of the stencil, the printing process and equipment, solder powder, and rheology or the physical properties of the paste. Good solder wetting is a function of the flux.

Inputs

Inputs to the process can be classified as design input, material input and process parameter input. The output of the process is a printed wiring board that meets the process specification limits. These specifications usually are consistent solder paste volume and height, and printed solder paste aligned on the PWB pads. This determines the process yield.

In electronic design automation, the solder paste mask and thus the stencil is typically defined in a layer named tCream/bCream aka CRC/CRS, [1] [nb 1] PMC/PMS, [2] TPS/BPS, [3] or TSP/BSP (EAGLE), F.Paste/B.Paste (KiCad), PasteTop/PasteBot (TARGET), SPT/SPB (OrCAD), PT.PHO/PB.PHO (PADS), PASTE-VS/PASTE-RS (WEdirekt), [4] GTP/GBP (Gerber and many others [5] ). Some (less common) EDA software does not treat the solder paste mask as a regular part of a PCB's layer stack, in which case the paste mask must be derived from the solder stop mask.

For improved accuracy, stencils traditionally were often mounted in proprietary aluminum frames of various kinds. Today, the usage of quick mount systems is more common at least for low volume batches, mounting the stencil pneumatically or mechanically. For this the stencil needs additional perforations for alignment following one of several mount system standards including QuattroFlex, ZelFlex, ESSEMTEC, PAGGEN, Metz, DEK VectorGuard, Mechatronic Systems and others.

Printing process

The process begins with loading the board into the printer. The internal vision system aligns the stencil to the board, after which the squeegee prints the solder paste. The stencil and board are then separated and unloaded. The bottom of the stencil is wiped about every ten prints to remove excess solder paste remaining on the stencil.

A typical printing operation has a speed of around 15 to 45 seconds per board. Print head speed is typically 1 to 8 inches per second. The printing process must be carefully controlled. Misalignment of motion from the reference results in several defects, hence the board must be secured correctly before the process begins. A snugger and vacuum holders are used to secure the X and Y axes of the board. Vacuum holders must be carefully used, as they may affect the pin-in-paste printing process if not secured properly.

The longest process is the printing operation, followed by the separation process. Post print inspection is crucial and is usually performed with special 2D vision systems on the printer or separate 3D systems.

Printed wiring boards

Design

Vision systems in the stencil printing machines use global fiducial marks for aligning the PWB. Without these fiducials the printer would not print the solder paste in exact alignment with the pads. The PWB should have close dimensional tolerances so that it mates to the stencil. This is necessary to achieve the required alignment of solder blocks on the pads.

Masking

The required accuracy in alignment can also be achieved by controlling the flow of solder on the PWB during reflow soldering. For this purpose, the space between the pads is often coated with a solder mask. The solder mask materials have no affinity to the molten solder and hence, no positive bonding is formed between them as the solder solidifies. This process is often referred to as Solder masking. The mask must be centered correctly. The mask protects the PWB against oxidation, and prevents unintended solder bridges from forming between closely spaced solder pads.

Also the height of the solder mask should be lower than the pad height to avoid gasketing problems. If the height of the solder mask is greater than that of the pad, then some of the solder paste would settle in the empty space between the mask and the pad. This is what is referred to as gasketing. It is a seal that fills the space between two surfaces to prevent leakages. Gasketing is a problem as the excess solder paste around the pad may be more than a nuisance factor for circuits having very small line spacing.

Finishing

The pads on the PWB are made of copper and are susceptible to oxidization. Surface oxidization on the copper will inhibit the ability of the solder to form a reliable joint. To avoid this unwanted effect, all exposed copper is protected with a surface finish.

Aperture fill and release

The core of a well printed PWB lies in the fill and release of solder paste into the aperture. When the stencil is in contact with the PWB, solder paste is applied over the top surface of the stencil using a squeegee. This causes the aperture to fill with solder paste. The PWB is then lowered from the stencil. The amount of solder paste which is released from the stencil apertures and transferred to the PWB pads, determines whether or not the print is good. Ideally, all volumes of solder paste should be equal to the volume of the corresponding stencil aperture. In reality however, this is never the case. Hence, a print is considered to be good if a certain fraction of the paste is released. One way of quantifying print performance is to calculate the transfer efficiency. This is mathematically stated as:

Transfer efficiency = (Volume of printed deposit) / (Theoretical maximum volume)

In the above expression, the theoretical maximum volume is simply the open volume of the stencil aperture. Ideally, a transfer efficiency of 1 is desired. In reality however, greater the transfer efficiency, better is the print. Now in order to get the aperture full of paste requires sufficient flow rate and sufficient fill time. Apertures which are not completely filled will not release paste onto the board, which results in clogged stencils and defective solder joints. Solder paste release is determined by the separation speed of the board from the stencil. The adhesion of the paste to the board has to provide the shearing force to overcome the adhesion of the paste to the stencil walls. This hydrodynamic shearing force depends on the separation speed.

Stencils

Stencils are used to print solder paste on the PCB. They are often made of stainless steel or nickel and are manufactured by different processes described below.

Manufacturing processes

Laser cutting

The use of laser technology allows having tighter tolerances and greater accuracy.

The aperture walls can be smoothed through electro-polishing and/or nickel plating. The laser cutting process results in trapezoidal apertures that can create better solder paste release characteristics.

The repeatability of dimensions in laser-cut stencils is generally better than that of chemical etching. With laser cutting, there are no photo films requiring precise alignment or protection from moisture.

E-FAB stencil

This stencil is formed by the process of electroforming nickel, hence the name E-FAB. The nickel has better wear characteristics than steel and electroforming creates smooth tapered aperture walls. The process also creates a ridge along the bottom of the stencil that can improve stencil-to-board gasketing and result in more consistent solder paste release.

Stencil design

Due to the need for fine pitch components, as the size of the aperture becomes smaller and smaller, they become “tall-narrow” apertures. In such cases, the apertures may be filled with solder paste but not completely released, or sometimes not even completely filled and hence get no deposits. In order to counter this problem, aperture walls are made as smooth as possible. Also, molecular layer nano coatings are put on the stencil walls so that the solder paste does not stick. Consistent fill and release is the most important output of stencil printing. When the stencil is down on the board, paste is filling the aperture and it's in contact with the pad and walls of the stencil. The contact is judged by taking the ratio of these areas i.e. the ratio of the area of the pad to the area of the walls. This is called area ratio. The information about the standards for stencil design is available at IPC Specification 7525 and other standards. In general, including stencils with tall and narrow apertures, an area ratio greater than 0.66 is recommended.

Illustrations of the various dimensions:

PitchPad widthApertureStencil thicknessAspect ratio
25151262.0
20129–105–61.7
15107–851.4
1285–64–51.2

For fine pitch stencils (smaller 20 mils pitch, 10 mils aperture), even with a 5 mils stencil, which is the most commonly used stencil thickness, the area ratio is below 1.5. This necessitates the use of a thinner stencil. For BGA/CSP and other very small apertures, the area ratio is used. It should be greater than 0.66, as this ensures a high probability of good fill and release. An area ratio below 0.66 would mean a much less reliable process.

Examples of area ratios for BGAs:

BGAPadApertureThicknessArea ratio
60 mil32306–81.25 – 0.94
50 mil25226–80.92 – 0.69
20 mil12105–60.50 – 0.42

Aperture size should be smaller than the pad size to avoid the excess solder paste or production of solder balls. A 10 to 20% reduction in aperture size as compared to the pad size is typical to minimize solder balls. Solder balls can result in malfunctioning of the electric circuit.

Other considerations

Step down stencils

A PCB may need varying amounts of solder paste to be applied depending upon the design and size of components. Applying a uniform maximum level of solder may not be a good solution in this case, as these stencils often find use when "pin and paste" technology (i.e., printing solder paste into through-holes to avoid wave soldering) and components of significantly different pitch are used in the same PWB. For this purpose, to achieve a varying solder amount, step down stencils are used.

Solder paste stencil life

Ideally, a solder paste should have, at minimum, a 4-hour stencil life. The stencil life is defined as a time period in which there will be no significant change in the solder paste material characteristics. A solder paste with a longer stencil life will be more robust in the printing process. Actual stencil life for a paste should be determined from the manufacturers' specifications and on-site verification.

Handling and storage of stencils

To improve the life and performance of stencils, they must be cleaned after use by removing any solder paste on them or within the apertures. The cleaned stencils are stored away in a protective area. Before usage, stencils are inspected for wear or damage. Stencils are typically identified by job numbers to reduce the risk of mishandling or misplacing.

Squeegee

Squeegees are used to spread solder over the stencil and to fill all apertures consistently. Squeegees come in two different types based either on metal or polyurethane. Metal squeegees are preferred over polyurethane.[ citation needed ] They produce very consistent solder volumes and are resistant to scooping the solder paste out of the apertures when printing. In addition, they have better wear characteristics, leading to longer life.

Common difficulties

Insufficient solder paste

Insufficient solder paste may cause poor bonds and contact between components and the board. The common causes of insufficient solder paste are poor gasketing, clogged stencil apertures, insufficient solder paste bead size, paste/stencil being used beyond recommended life span, stencil not wiped clean, or low squeegee pressure.

Smudging/bridging

The main causes of smudging/bridging are excessive squeegee pressure, inadequate stencil wiping, poor contact between the board and stencil, high temperature or humidity, or low solder paste viscosity.

Misalignment print

A typical misalignment print is usually caused by the vision system not spotting fiducials, PWB or stencil stretch, poor contact between the board and the stencil, or weak board support.

Bow and twist

A PCB board not fixed properly during solder paste printing gives poor results and increases soldering related issues. Normally, solder paste printing equipment can handle warpage of 1.0 to 3.0 mm but beyond this limit needs some special jigs or fixtures to hold the PCB. It may be difficult to tackle thick and small boards compared to thin and bigger size boards.

Statistical process control

More than 50% of defects in electronics assembly are due to solder paste printing problems. There are many parameters involved in this process, making it difficult to find the specific problem and to optimize the process. A careful statistical study of the process may be used to improve output significantly. The number of opportunities for a defect characterizes defects, not the actual number of defective parts.

Example:

If solder paste is printed on pads for a 68-pin QFP, then
Total number of opportunities for defects = 68 pins + 1 for the component = 69 possible defects for printing only.

Hence, there are 69 opportunities for defects to produce one defective component. Counting the defect opportunities is the most valid process monitor. Processes are typically rated in terms of number of defects per million opportunities (DPM). As an example, a process resulting in 100 defects when given 1 million defect opportunities would have a rating of 100 DPM. World class printing processes have defect levels around 20 DPM.

A low DPM printing process may be achieved by employing statistical techniques to determine the effects of individual parameters or interactions between different parameters. Important process parameters can then be optimized using design of experiments (DOE) techniques. These optimized parameters can then be implemented and process bench marking can begin. Statistical process control can then be used to continuously monitor and improve printing DPM levels.

See also

Notes

  1. The letters 'C' and 'S' in EAGLE's old Gerber filename extensions .CRC/.CRS for the top and bottom cream frame layers have their origin in times when printed circuit boards were typically equipped with through-hole components populated on one side of the board only, the so called "component side" (top) versus the "solder side" (bottom) where these components were soldered.

Related Research Articles

<span class="mw-page-title-main">Screen printing</span> Printing technique

Screen printing is a printing technique where a mesh is used to transfer ink onto a substrate, except in areas made impermeable to the ink by a blocking stencil. A blade or squeegee is moved across the screen to fill the open mesh apertures with ink, and a reverse stroke then causes the screen to touch the substrate momentarily along a line of contact. This causes the ink to wet the substrate and be pulled out of the mesh apertures as the screen springs back after the blade has passed. One colour is printed at a time, so several screens can be used to produce a multi-coloured image or design.

<span class="mw-page-title-main">Printed circuit board</span> Board to support and connect electronic components

A printed circuit board is a medium used to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich structure of conductive and insulating layers: each of the conductive layers is designed with an artwork pattern of traces, planes and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Electrical components may be fixed to conductive pads on the outer layers in the shape designed to accept the component's terminals, generally by means of soldering, to both electrically connect and mechanically fasten them to it. Another manufacturing process adds vias: plated-through holes that allow interconnections between layers.

<span class="mw-page-title-main">Surface-mount technology</span> Method for producing electronic circuits

Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred to as a surface-mount device (SMD). In industry, this approach has largely replaced the through-hole technology construction method of fitting components, in large part because SMT allows for increased manufacturing automation which reduces cost and improves quality. It also allows for more components to fit on a given area of substrate. Both technologies can be used on the same board, with the through-hole technology often used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

<span class="mw-page-title-main">Gerber format</span> Standard file format used for designing printed circuit boards

The Gerber format is an open, ASCII, vector format for printed circuit board (PCB) designs. It is the de facto standard used by PCB industry software to describe the printed circuit board images: copper layers, solder mask, legend, drill data, etc.

<span class="mw-page-title-main">Wave soldering</span>

Wave soldering is a bulk soldering process used for the manufacturing of printed circuit boards. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit board makes contact with this wave, the components become soldered to the board. Wave soldering is used for both through-hole printed circuit assemblies, and surface mount. In the latter case, the components are glued onto the surface of a printed circuit board (PCB) by placement equipment, before being run through the molten solder wave. Wave soldering is mainly used in soldering of through hole components.

<span class="mw-page-title-main">Reflow soldering</span> Attachment of electronic components

Reflow soldering is a process in which a solder paste is used to temporarily attach one or thousands of tiny electrical components to their contact pads, after which the entire assembly is subjected to controlled heat. The solder paste reflows in a molten state, creating permanent solder joints. Heating may be accomplished by passing the assembly through a reflow oven, under an infrared lamp, or (unconventionally) by soldering individual joints with a desoldering hot air pencil.

<span class="mw-page-title-main">Rework (electronics)</span> Refinishing operation of an electronic printed circuit board assembly

Rework is the term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly, usually involving desoldering and re-soldering of surface-mounted electronic components (SMD). Mass processing techniques are not applicable to single device repair or replacement, and specialized manual techniques by expert personnel using appropriate equipment are required to replace defective components; area array packages such as ball grid array (BGA) devices particularly require expertise and appropriate tools. A hot air gun or hot air station is used to heat devices and melt solder, and specialised tools are used to pick up and position often tiny components.

<span class="mw-page-title-main">Hybrid integrated circuit</span> Type of miniature electronic circuit

A hybrid integrated circuit (HIC), hybrid microcircuit, hybrid circuit or simply hybrid is a miniaturized electronic circuit constructed of individual devices, such as semiconductor devices and passive components, bonded to a substrate or printed circuit board (PCB). A PCB having components on a Printed Wiring Board (PWB) is not considered a true hybrid circuit according to the definition of MIL-PRF-38534.

A via is an electrical connection between two or more metal layers, and are commonly used in printed circuit boards. Essentially a via is a small drilled hole that goes through two or more adjacent layers; the hole is plated with metal that forms an electrical connection through the insulating layers.

<span class="mw-page-title-main">Solder paste</span>

Solder paste is used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through-hole pin in paste components by printing solder paste in and over the holes. The sticky paste temporarily holds components in place; the board is then heated, melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe; then the components are put in place by a pick-and-place machine or by hand.

<span class="mw-page-title-main">Selective soldering</span>

Selective soldering is the process of selectively soldering components to printed circuit boards and molded modules that could be damaged by the heat of a reflow oven or wave soldering in a traditional surface-mount technology (SMT) or through-hole technology assembly processes. This usually follows an SMT oven reflow process; parts to be selectively soldered are usually surrounded by parts that have been previously soldered in a surface-mount reflow process, and the selective-solder process must be sufficiently precise to avoid damaging them.

<span class="mw-page-title-main">Flat no-leads package</span> Integrated circuit package with contacts on all 4 sides, on the underside of the package

Flat no-leads packages such as quad-flat no-leads (QFN) and dual-flat no-leads (DFN) physically and electrically connect integrated circuits to printed circuit boards. Flat no-leads, also known as micro leadframe (MLF) and SON, is a surface-mount technology, one of several package technologies that connect ICs to the surfaces of PCBs without through-holes. Flat no-lead is a near chip scale plastic encapsulated package made with a planar copper lead frame substrate. Perimeter lands on the package bottom provide electrical connections to the PCB. Flat no-lead packages usually, but not always, include an exposed thermally conductive pad to improve heat transfer out of the IC. Heat transfer can be further facilitated by metal vias in the thermal pad. The QFN package is similar to the quad-flat package (QFP), and a ball grid array (BGA).

Automated optical inspection (AOI) is an automated visual inspection of printed circuit board (PCB) manufacture where a camera autonomously scans the device under test for both catastrophic failure and quality defects. It is commonly used in the manufacturing process because it is a non-contact test method. It is implemented at many stages through the manufacturing process including bare board inspection, solder paste inspection (SPI), pre-reflow and post-re-flow as well as other stages.

<span class="mw-page-title-main">Solder mask</span> Layer of polymer applied to printed circuit boards

Solder mask, solder stop mask or solder resist is a thin lacquer-like layer of polymer that is usually applied to the copper traces of a printed circuit board (PCB) for protection against oxidation and to prevent solder bridges from forming between closely spaced solder pads. A solder bridge is an unintended electrical connection between two conductors by means of a small blob of solder. PCBs use solder masks to prevent this from happening. Solder mask is not always used for hand soldered assemblies, but is essential for mass-produced boards that are soldered automatically using reflow or wave soldering techniques. Once applied, openings must be made in the solder mask wherever components are soldered, which is accomplished using photolithography. Solder mask is traditionally green, but is also available in many other colors.

<span class="mw-page-title-main">Bead probe technology</span> Technique used for in-circuit testing

Bead probe technology (BPT) is technique used to provide electrical access to printed circuit board (PCB) circuitry for performing in-circuit testing (ICT). It makes use of small beads of solder placed onto the board's traces to allow measuring and controlling of the signals using a test probe. This permits test access to boards on which standard ICT test pads are not feasible due to space constraints.

Microvias are used as the interconnects between layers in high density interconnect (HDI) substrates and printed circuit boards (PCBs) to accommodate the high input/output (I/O) density of advanced packages. Driven by portability and wireless communications, the electronics industry strives to produce affordable, light, and reliable products with increased functionality. At the electronic component level, this translates to components with increased I/Os with smaller footprint areas, and on the printed circuit board and package substrate level, to the use of high density interconnects (HDIs).

<span class="mw-page-title-main">Thick-film technology</span>

Thick-film technology is used to produce electronic devices/modules such as surface mount devices modules, hybrid integrated circuits, heating elements, integrated passive devices and sensors. Main manufacturing technique is screen printing (stenciling), which in addition to use in manufacturing electronic devices can also be used for various graphic reproduction targets. It became one of the key manufacturing/miniaturisation techniques of electronic devices/modules during 1950s. Typical film thickness – manufactured with thick film manufacturing processes for electronic devices – is 0.0001 to 0.1 mm.

Component placement is an electronics manufacturing process that places electrical components precisely on printed circuit boards (PCBs) to create electrical interconnections between functional components and the interconnecting circuitry in the PCBs (leads-pads). The component leads must be accurately immersed in the solder paste previously deposited on the PCB pads. The next step after component placement is soldering.

In electronics, a cross section, cross-section, or microsection, is a prepared electronics sample that allows analysis at a plane that cuts through the sample. It is a destructive technique requiring that a portion of the sample be cut or ground away to expose the internal plane for analysis. They are commonly prepared for research, manufacturing quality assurance, supplier conformity, and failure analysis. Printed wiring boards (PWBs) and electronic components and their solder joints are common cross sectioned samples. The features of interest to be analyzed in cross section can be nanometer-scale metal and dielectric layers in semiconductors up to macroscopic features such as the amount of solder that has filled into a large, 0.125in (3.18mm) diameter plated through hole.

Dye-n-Pry, also called Dye And Pry, Dye and Pull, Dye Staining, or Dye Penetrant, is a destructive analysis technique used on surface mount technology (SMT) components to either perform failure analysis or inspect for solder joint integrity. It is an application of dye penetrant inspection.

References

  1. "Preparing the Manufacturing Data: Gerber Files for Photoplotters with Variable Aperture Wheels". EAGLE - Easily Applicable Graphics Layout Editor - Manual - Version 3.55 and later (PDF) (2 ed.). Delray Beach, Florida, USA: CadSoft Computer, Inc. 1999. p. 88–90 [89]. Archived (PDF) from the original on 2022-08-30. Retrieved 2022-08-30.
  2. "Leitlinien EAGLE nach Gerber konvertieren" (in German). Eurocircuits. 2016. Archived from the original on 2022-08-30. Retrieved 2022-08-30.
  3. autodeskguest (2009–2010). "Gerber Generation". element14.com. Archived from the original on 2022-08-28. Retrieved 2022-08-30. (NB. The Gerber filename extensions .TPS/.BPS where used only by some old versions of EAGLE for boards with more than two layers.)
  4. "Lagenbezeichnungen" [Layer designators]. WEdirekt (in German). Rot am See, Germany: Würth Elektronik GmbH & Co. KG. 2020. Archived from the original on 2022-08-29. Retrieved 2022-08-29.
  5. "Gerber Output Options" (PDF). 1.3. Altium Limited. 2011-07-27 [2008-03-26, 2005-12-05]. Archived (PDF) from the original on 2022-08-29. Retrieved 2022-08-29.

Further reading