Stereology

Last updated

Stereology is the three-dimensional interpretation of two-dimensional cross sections of materials or tissues. It provides practical techniques for extracting quantitative information about a three-dimensional material from measurements made on two-dimensional planar sections of the material. Stereology is a method that utilizes random, systematic sampling to provide unbiased and quantitative data. It is an important and efficient tool in many applications of microscopy (such as petrography, materials science, and biosciences including histology, bone and neuroanatomy). Stereology is a developing science with many important innovations being developed mainly in Europe.[ citation needed ] New innovations such as the proportionator continue to make important improvements in the efficiency of stereological procedures.

Contents

In addition to two-dimensional plane sections, stereology also applies to three-dimensional slabs (e.g. 3D microscope images), one-dimensional probes (e.g. needle biopsy), projected images, and other kinds of 'sampling'. It is especially useful when the sample has a lower spatial dimension than the original material. Hence, stereology is often defined as the science of estimating higher-dimensional information from lower-dimensional samples.

Stereology is based on fundamental principles of geometry (e.g. Cavalieri's principle) and statistics (mainly survey sampling inference). It is a completely different approach from computed tomography .

Classical examples

Classical applications of stereology include:

The popular science fact that the human lungs have a surface area (of gas exchange surface) equivalent to a tennis court (75 square meters), was obtained by stereological methods. Similarly for statements about the total length of nerve fibres, capillaries etc. in the human body.

Errors in spatial interpretation

The word Stereology was coined in 1961 and defined as `the spatial interpretation of sections'. This reflects the founders' idea that stereology also offers insights and rules for the qualitative interpretation of sections.

Stereologists have helped to detect many fundamental scientific errors arising from the misinterpretation of plane sections. Such errors are surprisingly common. For example:

Stereology is not tomography

Stereology is a completely different enterprise from computed tomography. A computed tomography algorithm effectively reconstructs the complete internal three-dimensional geometry of an object, given a complete set of all plane sections through it (or equivalent X-ray data). On the contrary, stereological techniques require only a few 'representative' plane sections, from which they statistically extrapolate the three-dimensional material.

Stereology exploits the fact that some 3-D quantities can be determined without 3-D reconstruction: for example, the 3-D volume of any object can be determined from the 2-D areas of its plane sections, without reconstructing the object. (This means that stereology only works for certain quantities like volume, and not for other quantities).

Sampling principles

In addition to using geometrical facts, stereology applies statistical principles to extrapolate three-dimensional shapes from plane section(s) of a material. [1] The statistical principles are the same as those of survey sampling (used to draw inferences about a human population from an opinion poll, etc.). Statisticians regard stereology as a form of sampling theory for spatial populations.

To extrapolate from a few plane sections to the three-dimensional material, essentially the sections must be 'typical' or 'representative' of the entire material. There are basically two ways to ensure this:

or

The first approach is the one that was used in classical stereology. Extrapolation from the sample to the 3-D material depends on the assumption that the material is homogeneous. This effectively postulates a statistical model of the material. This method of sampling is referred to as model-based sampling inference.

The second approach is the one typically used in modern stereology. Instead of relying on model assumptions about the three-dimensional material, we take our sample of plane sections by following a randomized sampling design, for example, choosing a random position at which to start cutting the material. Extrapolation from the sample to the 3-D material is valid because of the randomness of the sampling design, so this is called design-based sampling inference.

Design-based stereological methods can be applied to materials which are inhomogeneous or cannot be assumed to be homogeneous. These methods have gained increasing popularity in the biomedical sciences, especially in lung-, kidney-, bone-, cancer- and neuro-science. Many of these applications are directed toward determining the number of elements in a particular structure, e.g. the total number of neurons in the brain.

Geometrical models

Many classical stereological techniques, in addition to assuming homogeneity, also involved mathematical modeling of the geometry of the structures under investigation. These methods are still popular in materials science, metallurgy and petrology where shapes of e.g. crystals may be modelled as simple geometrical objects. Such geometrical models make it possible to extract additional information (including numbers of crystals). However, they are extremely sensitive to departures from the assumptions.

Total quantities

In the classical examples listed above, the target quantities were relative densities: volume fraction, surface area per unit volume, and length per unit volume. Often we are more interested in total quantities such as the total surface area of the lung's gas exchange surface, or the total length of capillaries in the brain. relative densities are also problematic because, unless the material is homogeneous, they depend on the unambiguous definition of the reference volume.

Sampling principles also make it possible to estimate total quantities such as the total surface area of lung. Using techniques such as systematic sampling and cluster sampling we can effectively sample a fixed fraction of the entire material (without the need to delineate a reference volume). This allows us to extrapolate from the sample to the entire material, to obtain estimates of total quantities such as the absolute surface area of lung and the absolute number of cells in the brain.

Timeline

The primary scientific journals for stereology are Image Analysis & Stereology (former Acta Stereologica) and Journal of Microscopy

See also

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa).

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Zeta potential</span> Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

<span class="mw-page-title-main">Powder diffraction</span>

Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

<span class="mw-page-title-main">Metallography</span> Study of metals using microscopy

Metallography is the study of the physical structure and components of metals, by using microscopy.

<span class="mw-page-title-main">Ceramography</span> Preparation and study of ceramics with optical instruments

Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 µm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentations. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.

The proportionator is the most efficient unbiased stereological method used to estimate population size in samples.

Porosity or void fraction is a measure of the void spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface.

Multiangle light scattering (MALS) describes a technique for measuring the light scattered by a sample into a plurality of angles. It is used for determining both the absolute molar mass and the average size of molecules in solution, by detecting how they scatter light. A collimated beam from a laser source is most often used, in which case the technique can be referred to as multiangle laser light scattering (MALLS). The insertion of the word laser was intended to reassure those used to making light scattering measurements with conventional light sources, such as Hg-arc lamps that low-angle measurements could now be made. Until the advent of lasers and their associated fine beams of narrow width, the width of conventional light beams used to make such measurements prevented data collection at smaller scattering angles. In recent years, since all commercial light scattering instrumentation use laser sources, this need to mention the light source has been dropped and the term MALS is used throughout.

Cell counting is any of various methods for the counting or similar quantification of cells in the life sciences, including medical diagnosis and treatment. It is an important subset of cytometry, with applications in research and clinical practice. For example, the complete blood count can help a physician to determine why a patient feels unwell and what to do to help. Cell counts within liquid media are usually expressed as a number of cells per unit of volume, thus expressing a concentration.

Adrian John Baddeley is a statistical scientist working in the fields of spatial statistics, statistical computing, stereology and stochastic geometry.

In physics, a free surface flow is the surface of a fluid flowing that is subjected to both zero perpendicular normal stress and parallel shear stress. This can be the boundary between two homogeneous fluids, like water in an open container and the air in the Earth's atmosphere that form a boundary at the open face of the container.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

<span class="mw-page-title-main">International Society for Stereology & Image Analysis</span>

The International Society for Stereology & Image Analysis (ISSIA) is an international scientific society whose purpose is to encourage the development and dissemination of knowledge in stereology and image analysis in a wide range of disciplines. It was founded in 1961. Although the Society is currently based in the Czech Republic, it is an international organization. The former name was International Society for Stereology.

Eva Bjørn Vedel Jensen is a Danish mathematician and statistician known for her work in spatial statistics, stereology, stochastic geometry, and medical imaging. She is a professor emeritus in the Department of Mathematical Sciences at Aarhus University.

<span class="mw-page-title-main">Pore structure</span>

Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology of a porous medium. Pores are the openings in the surfaces impermeable porous matrix which gases, liquids, or even foreign microscopic particles can inhabit them. The pore structure and fluid flow in porous media are intimately related.

References

  1. Howard, C.V., Reed, M. G. Unbiased Stereology (second edition). Garland Science/BIOS Scientific Publishers, 2005. pp. 143–163