Stored Energy at Sea

Last updated

The Stored Energy at Sea (StEnSEA) project is a pump storage system designed to store significant quantities of electrical energy offshore. After research and development, it was tested on a model scale in November 2016. It is designed to link in well with offshore wind platforms and their issues caused by electrical production fluctuations. It works by water flowing into a container, at significant pressure, thus driving a turbine. When there is spare electricity the water is pumped out, allowing electricity to be generated at a time of increased need.

Contents

Development history

In 2011, the physics Prof. Dr Horst Schmidt-Böcking  [ de ] (Goethe University Frankfurt) and Dr. Gerhard Luther (Saarland University) had the idea of a pump storage system that would be placed on the sea bed. This system would use the high water pressure at great water depths to store energy in hollow bodies.

Shortly, after their idea was published on 1 April 2011 in the newspaper Frankfurter Allgemeine Zeitung, a consortium of the Fraunhofer Institute for Energy Economics and Energy System Technology and the construction company Hochtief AG was set up. In collaboration they conducted a first preliminary sketch, which proved the feasibility of the pump storage concept. Subsequently, the German Federal Ministry for Economic Affairs and Energy supported the development and testing of the new concept. [1]

Financial support through the BMWi [2]
Executive agencySupported periodTotal granted
AHochtief Solutions AG2013-01-01 to 2014-02-1063.572,50 EUR
BFraunhofer Institute for Energy Economics

and Energy System Technology

2013-01-01 to 2017-06-302.131.715,89 EUR

Physical principle

The functionality of a seawater pressure storage power plant is based on usual pumped-hydro storage plants. A hollow concrete sphere with an integrated pump-turbine will be installed on the bottom of the sea. Compared to well known pumped-hydro storage plants, the sea that surrounds the sphere represents the upper water basin. The hollow sphere represents the lower water basin. The StEnSea concept uses the high water pressure difference between the hollow sphere and the surrounding sea, which is about 75 bar (≈1 bar per 10 meters). [3]

In case of overproduction of adjacent energy sources such as wind turbines or photovoltaic systems, the pump-turbine will be enabled to pump water from the cavity against the pressure into the surrounding sea. [4] An empty hollow sphere means a fully charged storage system. When electricity is needed, water from the surrounding sea is guided through the turbine into the cavity, generating electricity. The higher the pressure difference between hollow sphere and the surrounding sea, the higher the energy yield during discharging. While discharging the hollow sphere a vacuum will be created inside. To avoid cavitation, the pump turbines and all other electrical components are placed in a centrally mounted cylinder. An auxiliary feed pump in the bottom of the cylinder is required to fill the cylinder with water and produces an inside pressure. [5]

"Both pumps require an input pressure above the net positive suction head to avoid cavitation while pumping water from the inner volume into the cylinder or from the cylinder out of the sphere. As the pressure difference for the additional pump is much lower than for the pump turbine the required input pressure is lower as well. The input pressure of both pumps is given by the water column above them. For the additional pump this is the water column in the sphere and for the pump turbine it is the water column in the cylinder." [6]

The maximum capacity for the hollow concrete sphere depends on the total pump-turbine efficiency, the installation depth and the inner volume.

[7]

The stored energy is proportional to the ambient pressure in the depths of the sea. Problems considered during the construction of the hollow sphere were choosing a construction-type that withstands the high water-pressure and which is heavy enough to keep the buoyancy force lower than the gravitational force. [3] This resulted in the spherical construction with an inner diameter of 28.6 meter and a 2.72 meter thick wall made of normal watertight concrete.

Relevant technical parameters of a StEnSea unit: [7]
ParameterValueUnit
Construction depth750m
Inner diameter of the hollow sphere28.6m
Hollow sphere volumina12,200m³/unit
Electrical storage capacity18.3MWh/unit
Installed electrical capacity5MW/unit
Specific storage capacity0.715kWh/m³
Units per storage farm5-140units
Turbine efficiency0.82
Pump efficiency0.89
Total efficiency0.73

Pilot test

To prove feasibility under real conditions and to acquire measurement data, the Fraunhofer engineers started implementing a pilot project. Hochtief Solutions AG constructed a pilot hollow sphere at a scale of 1:10 out of concrete, with an outer diameter of three meters and an inner volume of eight m3. [5] On 9 November 2016 it was installed in Lake Constance at a depth of 100 meters and tested for four weeks. [4]

During the test phase, the engineers were able to successfully store energy and operate the system in different operating modes. The engineers also studied whether a pressure equalization line to the surface is required. In case of application without the compensating cable, a reduction of costs and expense would be possible. The pilot test revealed, that both operation variants work and would be possible to run. [8]

In the next step, a possible test location in the sea for the carrying out of a demonstration project is to be scrutinized. Then a sphere with the planned demonstration diameter of 30 meters should be built and installed at a suitable location in the sea. Possible places of installation situated near a coast would be for example the Norwegian trench or some Spanish sea areas. [9]

Furthermore, partners from the industry financing half of the project must be found, in order to receive further public funding from the BMWi. Because the total costs for the demonstration project are estimated at a low double-digit million euro amount. [10]

Potential installation sites

The identification of potential installation sites was undertaken in three consecutive steps. At first, the designation of several arguments depicting the quality of a potential location were determined. Besides the installation depth, which is the main factor involved, variables like slope, geomorphology, distance to a possible grid connection point as well as to bases for servicing and set-up, marine reserves and the requirement for power storage in the surroundings were taken into account.

In the following step, specific values were assigned to the hard parameters, which are required for the use of the technology. Many of these values were determined in a previous feasibility analysis, a few had to be assessed by using comparable applications from different offshore industries. The installation depth of the concrete sphere should be 600-800m below the sea level and have an angle of inclination of less than or equal to 1°. In addition, it is required to reach the next grid connection point within one hundred kilometres as well as a basis, from which maintenance and repair measures can be carried out. Furthermore, an installation basis should not be more than 500 km away and areas with inappropriate geomorphology for example canyons were excluded.

Finally, a global location analysis, based on geo-datasets and the above defined restrictions, was carried out with a Geographical Information System (GIS). In order to make a statement about the potential storage capacities, the resulting areas were assigned to the Exclusive Economic Zones (EEZ) of the affected states. [5] Those and the corresponding capacities for storing electricity are displayed in the table below.

TOP 10 countries worldwide [5]
CountryArea [km2]Share of total areaCapacity [Gwh]
Total Area111.659100%817.344
TOP 1085.92577%628.971
United States85.9259%74.854
Japan9.5119%69.621
Saudi Arabia8.5358%62.476
Indonesia8.0027%58.575
Bahamas6.2016%45.391
Libya5.8365%42.720
Italy5.5725%40.787
Spain4.2994%31.469
Greece3.4763%25.444
Kenya3.3073%24.207

Economic assessment of StEnSea

StEnSea is a modular high capacity energy storage technology. It's profitability depends on installed units (concrete hollows) per facility (causing scale effects), on the realized arbitrages on the energy market and it depends on the operating hours per year. [7] As well as on the investment and operation cost.

In the following chart the relevant economic parameters for an economic assessment are pictured. About 800 to 1000 full operation cycles per annum are required.

For the operation and management of a storage farm, personal expenditure is based on 0.5 - 2 staff per storage farm, depending on the farm capacity. Labor costs of 70 k€ per year and member of staff are used for the calculation. The price arbitrage is set to be 6 €ct per kWh for the economic assessment, resulting from an average electricity purchase price of 2 €ct per kWh and an average sale price of 8 €ct kWh. This price arbitrage includes the purchase of other services such as the provision of positive or negative balance power, frequency control or reactive power, all of which are not separately considered in the calculations. Planning and approval costs include costs for the site evaluation (as prerequisite for the permission), power plant certification, as well as the project development and management. [7]

Relevant economic parameters [7]
Units
Economic useful lifetime
Construction20a
Machinery7-20a
Repair and maintenance
Construction1,5% of investment
Machinery3% of investment
Insurance0,5% of investment
Calculatory interest rate7%
Labor costs70k€/a staff
Manpower requirements0.5-2staff/farm
Average electricity purchase price2€ Cent/kWh
Average electricity sale price8€ Cent/kWh
Annual operation cycles800-1000
Rate of price increase other costs2%/a
Rate of price increase capital costs2%/a
Planning and approval1070-1040k€/unit
Costs for grid connection15% of investm.

Depending on the number of storage units per farm, the unit specific costs for planning and approval vary in the range from 1,070 mio.€ at 120 units to 1,74 mio.€ at 5 units. Also the annuities depend directly on the number of installed units. [7] With 120 units an annuity of 544k€ can be achieved, while only a 232k€ annuity with 5 installed units only is possible.

Economic performance of a StEnSEA unit as part of a subsea storage farm [7]
Number of units per storage farm1208040205
Investment [in 1000 €]
Concrete sphere (including installation)2,4702,6702,7202,7702,870
Pump turbine2,3402,6002,7302,8603,120
Screen system119132139145158
Measurement and control installation5050505050
Grid connection1,7851,8001,8451,8651,910
Planning and approval1,0691,1541,2211,3131,742
Total investment7,8328,4068,7049,0039,850
Yearly costs and revenues [1000 €/a]
Capital related costs9561,0341,0741,1151,218
Operational related costs130144152157173
Demand related costs191191191191191
Other costs3942444547
Total costs1,3171,4111,4601,5071,629
Total revenues1,8611,8611,8611,8611,861
Annuity544450401354232

Ecological effects

Due to the main components of the construction (primarily steel, concrete for the hollow and cables for the connection), this system presents minimal risks to the eco-system. To avoid sea animals being sucked into the turbine a fine meshed grid is installed. In addition, the flow speed of the water rushing into the hollow is kept low. [8]

Media coverage

A video post on the public television station ZDF called the hollow concrete balls a “possible solution to store solar and wind energy”. The gained data helped to understand the project better. For further tests on a bigger scale Christian Dick, also a member of the Fraunhofer IEE team, thinks about constructing a big concrete hollow upon the sea. [11]

The TV station ZDF nano produced a documentary about the field study StEnSea in Lake Constance (German: Bodensee). Christian Dick was cited that “the ball exactly worked like it was supposed to work”. The most important finding was that an air-connection to the surface is not needed, reducing the technical effort significantly. Project leader Matthias Puchta from Fraunhofer IEE said “by pumping out the water we created a nearly total vacuum. Demonstrating that was very exciting, because nobody was able to do that before by using this technology. We showed it works.” For maintenance and possible technical problems the technology will be located in a cylinder, easy to recover and maintain with a robotic submarine. After all this technology could be “a mosaic of our future energy supply". [12]

This opinion was shared by Swiss radio channel SRF as they reported about the project as a “potentially path-breaking experiment”. Thanks to the successful project in the lake, where energy was fed in a test grid and drawn from it, the team intends to install a concrete ball of a diameter 10 times larger than the pilot project (30 meters). Due to Germany's too shallow coastlines, the country will not be used for further projects. [10] The Spanish coastline offers good conditions for a long-term project. This long-term project should last between three and five years under real-life conditions and is supposed to gain the data for the subsequent commercialization. [13]

Der Spiegel reported that the technology of StEnSea could be also interesting for offshore wind parks. The economically efficient storage of surplus energy is one of the key tasks for the grid and the energy market, as more and more renewables are taken into the system. Therefore, the technology's role in reorganizing the energy system can be crucial. [14]

Related Research Articles

<span class="mw-page-title-main">Energy storage</span> Captured energy for later usage

Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.

Ocean thermal energy conversion (OTEC) is a renewable energy technology that harnesses the temperature difference between the warm surface waters of the ocean and the cold depths to run a heat engine to produce electricity. It is a unique form of clean energy generation that has the potential to provide a consistent and sustainable source of power. Although it has challenges to overcome, OTEC has the potential to provide a consistent and sustainable source of clean energy, particularly in tropical regions with access to deep ocean water.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Pumped-storage hydroelectricity</span> Electric energy storage system

Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. A PSH system stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power.

<span class="mw-page-title-main">Wind power</span> Electrical power generation from wind

Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines, generally grouped into wind farms and connected to the electrical grid.

<span class="mw-page-title-main">Tidal power</span> Technology to convert the energy from tides into useful forms of power

Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.

<span class="mw-page-title-main">Compressed-air energy storage</span> Method for matching variable production with demand

Compressed-air-energy storage (CAES) is a way to store energy for later use using compressed air. At a utility scale, energy generated during periods of low demand can be released during peak load periods.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is the storage of thermal energy for later reuse. Employing widely different technologies, it allows surplus thermal energy to be stored for hours, days, or months. Scale both of storage and use vary from small to large – from individual processes to district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer cooling. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

Wave Dragon is a concept wave energy converter of the overtopping type, developed by the Danish company Wave Dragon Aps. Incoming waves flow up a ramp into a reservoir, the water the drains back to sea level though a hydro-electric turbine, generating electricity. "Reflector arms" are used to focus incoming waves, to channel the waves towards the ramp, increasing the energy captured.

<span class="mw-page-title-main">Microgeneration</span> Small-scale heating and electric power creation

Microgeneration is the small-scale production of heat or electric power from a "low carbon source," as an alternative or supplement to traditional centralized grid-connected power.

<span class="mw-page-title-main">Wind power in Europe</span>

As of 2023, Europe had a total installed wind capacity of 255 gigawatts (GW). In 2017, a total of 15,680 MW of wind power was installed, representing 55% of all new power capacity, and the wind power generated 336 TWh of electricity, enough to supply 11.6% of the EU's electricity consumption.

<span class="mw-page-title-main">CETO</span> Submerged wave power technology

CETO is a wave-energy technology that converts kinetic energy from ocean swell into electrical power and directly desalinates freshwater through reverse osmosis. The technology was developed and tested onshore and offshore in Fremantle, Western Australia. In early 2015 a CETO 5 production installation was commissioned and connected to the grid. As of January 2016 all the electricity generated is being purchased to contribute towards the power requirements of HMAS Stirling naval base at Garden Island, Western Australia. Some of the energy will also be used directly to desalinate water.

<span class="mw-page-title-main">Floating wind turbine</span> Type of wind turbine

A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Spain, Portugal, Japan, France and the United States' West Coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from the run of a river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

<span class="mw-page-title-main">Suction caisson</span> Open bottomed tube anchor embedded and released by pressure differential

Suction caissons are a form of fixed platform anchor in the form of an open bottomed tube embedded in the sediment and sealed at the top while in use so that lifting forces generate a pressure differential that holds the caisson down. They have a number of advantages over conventional offshore foundations, mainly being quicker to install than deep foundation piles and being easier to remove during decommissioning. Suction caissons are now used extensively worldwide for anchoring large offshore installations, like oil platforms, offshore drillings and accommodation platforms to the seafloor at great depths. In recent years, suction caissons have also seen usage for offshore wind turbines in shallower waters.

The following outline is provided as an overview of and topical guide to wind energy:

Oscillating water columns (OWCs) are a type of wave energy converter that harness energy from the oscillation of the seawater inside a chamber or hollow caused by the action of waves. OWCs have shown promise as a renewable energy source with low environmental impact. Because of this, multiple companies have been working to design increasingly efficient OWC models. OWC are devices with a semi-submerged chamber or hollow open to the sea below, keeping a trapped air pocket above a water column. Waves force the column to act like a piston, moving up and down, forcing the air out of the chamber and back into it. This continuous movement forces a bidirectional stream of high-velocity air, which is channeled through a power take-off (PTO). The PTO system converts the airflow into energy. In models that convert airflow to electricity, the PTO system consists of a bidirectional turbine. This means that the turbine always spins the same direction regardless of the direction of airflow, allowing for energy to be continuously generated. Both the collecting chamber and PTO systems will be explained further under "Basic OWC Components."

<span class="mw-page-title-main">Gravity battery</span> Type of electrical storage device

A gravity battery is a type of energy storage device that stores gravitational energy—the potential energy E given to an object with a mass m when it is raised against the force of gravity of Earth (g, 9.8 m/s²) into a height difference h.

References

  1. "Energiespeicher von morgen wird erstmals im Bodensee getestet" (in German). 2016-11-08. Retrieved 2018-06-14.
  2. "Verbundvorhaben: STENSEA". EnArgus (in German). Projektträger Jülich, Forschungszentrum Jülich GmbH. Retrieved 2018-06-14.
  3. 1 2 Garg, A.; Glowienka, S.; Meyer, J. (July–August 2013). "StEnSea - Die bauliche Konzeption eines Tiefsee-Energiespeichers". Bauingenieur. 88: 291–293.
  4. 1 2 "STENSEA – Storing Energy at Sea". Fraunhofer Institute for Energy Economics and Energy System Technology (in German). Retrieved 2018-06-14.
  5. 1 2 3 4 Puchta, M.; Bard, J.; Dick, C.; Hau, D.; Krautkremer, B.; Thalemann, F.; Hahn, H. (December 2017). "Development and testing of a novel offshore pumped storage concept for storing energy at sea - Stensea". Journal of Energy Storage. 14. Elsevier Ltd.: 271–273. Bibcode:2017JEnSt..14..271P. doi: 10.1016/j.est.2017.06.004 .
  6. Puchta, M.; Bard, J.; Dick, C.; Hau, D.; Krautkremer, B.; Thalemann, F.; Hahn, H. (December 2017). "Development and testing of a novel offshore pumped storage concept for storing energy at sea -StEnSea". Journal of Energy Storage. 14. Elsevier Ltd.: 271. Bibcode:2017JEnSt..14..271P. doi: 10.1016/j.est.2017.06.004 .
  7. 1 2 3 4 5 6 7 Hahn, H.; Hau, D.; Dick, C.; Puchta, M. (2017-05-24). "Techno-economic assessment of a subsea energy storage technology for power balancing services". Energy. 133. Elsevier Ltd.: 122–125. Bibcode:2017Ene...133..121H. doi: 10.1016/j.energy.2017.05.116 .
  8. 1 2 "Das System lässt sich flexibel einsetzen". Energiespeicher - Forschungsinitiative der Bundesregierung (in German). FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH. 2017-01-09. Retrieved 2018-06-19.
  9. Küffner, Georg (2016-11-18). "Speicher-Versuchsanlage: Forscher geben dem Bodensee die Kugel". Frankfurter Allgemeine (in German). Retrieved 2018-06-18.
  10. 1 2 Preuss, Susanne (2017-03-04). "Das Geheimnis der hohlen Betonkugel". Faz.net (in German). Retrieved 2018-06-19.
  11. "Betonkugeln als Stromspeicher" (in German). ZDF heute. 2017-03-27. Retrieved 2018-06-21.
  12. "nano vom 27. März 2017" (in German). ZDF nano. 2017-03-27. Retrieved 2018-06-21.
  13. "Betonkugel als Zwischenspeicher für Windenergie?". Schweizer Radio und Fernsehen (SRF) (in Swiss High German). 2017-03-03. Retrieved 2018-06-21.
  14. "Test im Bodensee geglückt: Riesige Betonkugel speichert Energie". Spiegel Online. 2017-03-03. Retrieved 2018-06-21.