Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic (actions having high acceleration) loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.
Structural analysis is mainly concerned with finding out the behavior of a physical structure when subjected to force. This action can be in the form of load due to the weight of things such as people, furniture, wind, snow, etc. or some other kind of excitation such as an earthquake, shaking of the ground due to a blast nearby, etc. In essence all these loads are dynamic, including the self-weight of the structure because at some point in time these loads were not there. The distinction is made between the dynamic and the static analysis on the basis of whether the applied action has enough acceleration in comparison to the structure's natural frequency. If a load is applied sufficiently slowly, the inertia forces (Newton's first law of motion) can be ignored and the analysis can be simplified as static analysis.
A static load is one which varies very slowly. A dynamic load is one which changes with time fairly quickly in comparison to the structure's natural frequency. If it changes slowly, the structure's response may be determined with static analysis, but if it varies quickly (relative to the structure's ability to respond), the response must be determined with a dynamic analysis.
Dynamic analysis for simple structures can be carried out manually, but for complex structures finite element analysis can be used to calculate the mode shapes and frequencies.
A dynamic load can have a significantly larger effect than a static load of the same magnitude due to the structure's inability to respond quickly to the loading (by deflecting). The increase in the effect of a dynamic load is given by the dynamic amplification factor (DAF) or dynamic load factor (DLF):
where u is the deflection of the structure due to the applied load.
Graphs of dynamic amplification factors vs non-dimensional rise time (tr/T) exist for standard loading functions (for an explanation of rise time, see time history analysis below). Hence the DAF for a given loading can be read from the graph, the static deflection can be easily calculated for simple structures and the dynamic deflection found.
A full time history will give the response of a structure over time during and after the application of a load. To find the full time history of a structure's response, you must solve the structure's equation of motion.
A simple single degree of freedom system (a mass, M, on a spring of stiffness k, for example) has the following equation of motion:
where is the acceleration (the double derivative of the displacement) and x is the displacement.
If the loading F(t) is a Heaviside step function (the sudden application of a constant load), the solution to the equation of motion is:
where and the fundamental natural frequency, .
The static deflection of a single degree of freedom system is:
so we can write, by combining the above formulae:
This gives the (theoretical) time history of the structure due to a load F(t), where the false assumption is made that there is no damping.
Although this is too simplistic to apply to a real structure, the Heaviside step function is a reasonable model for the application of many real loads, such as the sudden addition of a piece of furniture, or the removal of a prop to a newly cast concrete floor. However, in reality loads are never applied instantaneously – they build up over a period of time (this may be very short indeed). This time is called the rise time.
As the number of degrees of freedom of a structure increases it very quickly becomes too difficult to calculate the time history manually – real structures are analysed using non-linear finite element analysis software.
Any real structure will dissipate energy (mainly through friction). This can be modelled by modifying the DAF
where and is typically 2–10% depending on the type of construction:
Methods to increase damping
One of the widely used methods to increase damping is to attach a layer of material with a high Damping Coefficient, for example rubber, to a vibrating structure.
A modal analysis calculates the frequency modes or natural frequencies of a given system, but not necessarily its full-time history response to a given input. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure (including self-weight). It is not dependent on the load function.
It is useful to know the modal frequencies of a structure as it allows you to ensure that the frequency of any applied periodic loading will not coincide with a modal frequency and hence cause resonance, which leads to large oscillations.
The method is:
It is possible to calculate the frequency of different mode shape of system manually by the energy method. For a given mode shape of a multiple degree of freedom system you can find an "equivalent" mass, stiffness and applied force for a single degree of freedom system. For simple structures the basic mode shapes can be found by inspection, but it is not a conservative method. Rayleigh's principle states:
"The frequency ω of an arbitrary mode of vibration, calculated by the energy method, is always greater than – or equal to – the fundamental frequency ωn."
For an assumed mode shape , of a structural system with mass M; bending stiffness, EI (Young's modulus, E, multiplied by the second moment of area, I); and applied force, F(x):
then, as above:
The complete modal response to a given load F(x,t) is . The summation can be carried out by one of three common methods:
To superpose the individual modal responses manually, having calculated them by the energy method:
Assuming that the rise time tr is known (T = 2π/ω), it is possible to read the DAF from a standard graph. The static displacement can be calculated with . The dynamic displacement for the chosen mode and applied force can then be found from:
For real systems there is often mass participating in the forcing function (such as the mass of ground in an earthquake) and mass participating in inertia effects (the mass of the structure itself, Meq). The modal participation factor Γ is a comparison of these two masses. For a single degree of freedom system Γ = 1.
In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force is equal or close to a natural frequency of the system on which it acts. When an oscillating force is applied at a resonant frequency of a dynamic system, the system will oscillate at a higher amplitude than when the same force is applied at other, non-resonant frequencies.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.
In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.
A response spectrum is a plot of the peak or steady-state response of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of oscillation. One such use is in assessing the peak response of buildings to earthquakes. The science of strong ground motion may use some values from the ground response spectrum for correlation with seismic damage.
Seismic analysis is a subset of structural analysis and is the calculation of the response of a building structure to earthquakes. It is part of the process of structural design, earthquake engineering or structural assessment and retrofit in regions where earthquakes are prevalent.
Magnetic force microscopy (MFM) is a variety of atomic force microscopy, in which a sharp magnetized tip scans a magnetic sample; the tip-sample magnetic interactions are detected and used to reconstruct the magnetic structure of the sample surface. Many kinds of magnetic interactions are measured by MFM, including magnetic dipole–dipole interaction. MFM scanning often uses non-contact AFM (NC-AFM) mode.
In the field of ship design and design of other floating structures, a response amplitude operator (RAO) is an engineering statistic, or set of such statistics, that are used to determine the likely behavior of a ship when operating at sea. Known by the acronym of RAO, response amplitude operators are usually obtained from models of proposed ship designs tested in a model basin, or from running specialized CFD computer programs, often both. RAOs are usually calculated for all ship motions and for all wave headings.
In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating object, such as a shaft, propeller, leadscrew, or gear. As the speed of rotation approaches the object's natural frequency, the object begins to resonate, which dramatically increases system vibration. The resulting resonance occurs regardless of orientation. When the rotational speed is equal to the numerical value of the natural vibration, then that speed is referred to as critical speed.
Modal analysis is the study of the dynamic properties of systems in the frequency domain. Examples would include measuring the vibration of a car's body when it is attached to a shaker, or the noise pattern in a room when excited by a loudspeaker.
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen in eigensystems. The physical interpretation of the eigenvalues and eigenvectors which come from solving the system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired modes are the lowest frequencies because they can be the most prominent modes at which the object will vibrate, dominating all the higher frequency modes.
The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures under different atmospheres.
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.
The Eigensystem realization algorithm (ERA) is a system identification technique popular in civil engineering, in particular in structural health monitoring. ERA can be used as a modal analysis technique and generates a system realization using the time domain response (multi-)input and (multi-)output data. The ERA was proposed by Juang and Pappa and has been used for system identification of aerospace structures such as the Galileo spacecraft, turbines, civil structures and many other type of systems.
A circle-throw vibrating machine is a screening machine employed in processes involving particle separation. In particle processes screening refers to separation of larger from smaller particles in a given feed, using only the materials' physical properties. Circle throw machines have simple structure with high screening efficiency and volume. However it has limitations on the types of feed that can be processed smoothly. Some characteristics of circle-throw machines, such as frequency, vibration amplitude and angle of incline deck also affect output.
Dynamic Amplification Factor (DAF) or Dynamic Increase Factor (DIF), is a dimensionless number which describes how many times the deflections or stresses should be multiplied to the deflections or stresses caused by the static loads when a dynamic load is applied on to a structure.
Dynamic Substructuring (DS) is an engineering tool used to model and analyse the dynamics of mechanical systems by means of its components or substructures. Using the dynamic substructuring approach one is able to analyse the dynamic behaviour of substructures separately and to later on calculate the assembled dynamics using coupling procedures. Dynamic substructuring has several advantages over the analysis of the fully assembled system:
The Rayleigh's quotient represents a quick method to estimate the natural frequency of a multi-degree-of-freedom vibration system, in which the mass and the stiffness matrices are known.