Stub axle

Last updated

A stub axle or stud axle is either one of two front axles in a rear-wheel drive vehicle, or one of the two rear axles in a front-wheel drive vehicle. In a rear-wheel drive vehicle this axle is capable of angular movement about the kingpin for steering the vehicle.

The stub or stud axle is named so because it resembles the shape of a stub or stud, like a truncated end of an axle, short in shape and blunt. There are four general designs: [1]

  1. Elliot axle
  2. Reversed Elliot axle
  3. Lemoine axle
  4. Inverted Lemoine axle

See also

Related Research Articles

<span class="mw-page-title-main">Axle</span> Central shaft for a rotating wheel or gear

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type of axle is referred to as a spindle.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

A four-wheel drive, also called 4×4 or 4WD, is a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Leaf spring</span> Type of vehicle suspension

A leaf spring is a simple form of spring commonly used for suspension in wheeled vehicles. Originally called a laminated or carriage spring, and sometimes referred to as a semi-elliptical spring, elliptical spring, or cart spring, it is one of the oldest forms of vehicle suspension. A leaf spring is one or more narrow, arc-shaped, thin plates that are attached to the axle and chassis in a way that allows the leaf spring to flex vertically in response to irregularities in the road surface. Lateral leaf springs are the most commonly used arrangement, running the length of the vehicle and mounted perpendicular to the wheel axle, but numerous examples of transverse leaf springs exist as well.

<span class="mw-page-title-main">Front-engine, front-wheel-drive layout</span> Term used in automotive technology

In automotive design, a front-engine, front-wheel-drive (FWD) layout, or FF layout, places both the internal combustion engine and driven roadwheels at the front of the vehicle.

<span class="mw-page-title-main">Front-engine, rear-wheel-drive layout</span> Automobile layout

A front-engine, rear-wheel-drive layout(FR), also called Systeme Panhard is a powertrain layout with an engine in front and rear-wheel-drive, connected via a drive shaft. This arrangement, with the engine straddling the front axle, was the traditional automobile layout for most of the pre-1950s automotive mechanical projects. It is also used in trucks, pickups, and high-floor buses and school buses.

<span class="mw-page-title-main">Mid-engine design</span> Automobile design in which the engine is placed between the front and rear axles

In automotive engineering, a mid-engine layout describes the placement of an automobile engine in front of the rear-wheel axles, but behind the front axle.

<span class="mw-page-title-main">Drive shaft</span> Mechanical component for transmitting torque and rotation

A drive shaft, driveshaft, driving shaft, tailshaft, propeller shaft, or Cardan shaft is a component for transmitting mechanical power, torque, and rotation, usually used to connect other components of a drivetrain that cannot be connected directly because of distance or the need to allow for relative movement between them.

<span class="mw-page-title-main">Trailing-arm suspension</span> Form of vehicle suspension

A trailing-arm suspension, also referred to as trailing-link, is a form of vehicle suspension. In a motor vehicle it places one or more horizontal arms perpendicular to and forward of the axle on the chassis or unibody, which are connected to the axle or wheels with pivot joint(s). These are typically used on the rear axle or wheels of vehicles, but also found in both front and main landing gear of aircraft.

<span class="mw-page-title-main">De Dion suspension</span> Type of automobile suspension

A de Dion axle is a form of non-independent automobile suspension. It is a considerable improvement over the swing axle, Hotchkiss drive, or live axle. Because it plays no part in transmitting power to the drive wheels, it is sometimes called a "dead axle".

<span class="mw-page-title-main">Drive wheel</span> Any wheel of a motor vehicle that transmits force

A drive wheel is a wheel of a motor vehicle that transmits force, transforming torque into tractive force from the tires to the road, causing the vehicle to move. The powertrain delivers enough torque to the wheel to overcome stationary forces, resulting in the vehicle moving forwards or backwards.

<span class="mw-page-title-main">Snow chains</span> Devices fitted to the tires of vehicles to improve traction on snow and ice

Snow chains, or tire chains, are devices fitted to the tires of vehicles to provide increased traction when driving through snow and ice.

<span class="mw-page-title-main">Six-wheel drive</span> Type of drivetrain with all six wheels driven

Six-wheel drive is an all-wheel drive drivetrain configuration of three axles with at least two wheels on each axle capable of being driven simultaneously by the vehicle's engine. Unlike four-wheel drive drivetrains, the configuration is largely confined to heavy-duty off-road and military vehicles, such as all-terrain vehicles, armored vehicles, and prime movers.

A glossary of terms relating to automotive design.

<span class="mw-page-title-main">Dolly (trailer)</span> Trailer connection device

A dolly is an unpowered vehicle designed for connection to a tractor unit, truck or prime mover vehicle with strong traction power.

The powertrain layout of a motorised vehicle such as a car is often defined by the location of the engine or motors and the drive wheels.

The following outline is provided as an overview of and topical guide to automobiles:

<span class="mw-page-title-main">Twist-beam rear suspension</span> Type of automobile suspension

The twist-beam rear suspension is a type of automobile suspension based on a large H- or C-shaped member. The front of the H attaches to the body via rubber bushings, and the rear of the H carries each stub-axle assembly, on each side of the car. The cross beam of the H holds the two trailing arms together, and provides the roll stiffness of the suspension, by twisting as the two trailing arms move vertically, relative to each other.

<span class="mw-page-title-main">Front-engine, four-wheel-drive layout</span> Automotive configuration

In automotive design, an F4, or front-engine, four-wheel drive (4WD) layout places the internal combustion engine at the front of the vehicle and drives all four roadwheels. This layout is typically chosen for better control on many surfaces, and is an important part of rally racing, as well as off-road driving. In terms of racing purposes, whether it be on-road or off-road, can be described as follows,

A team that pursues the Weak LS4WD architecture will minimize the development cost of the front-wheel drive system at the expense of having a larger rear powertrain. The Weak architecture produces a vehicle with a large powersplit between the front and rear powertrains, while the Strong architecture recommends a vehicle with more similar power and torque requirements for the front and rear.

Torque vectoring is a technology employed in automobile differentials that has the ability to vary the torque to each half-shaft with an electronic system; or in rail vehicles which achieve the same using individually motored wheels. This method of power transfer has recently become popular in all-wheel drive vehicles. Some newer front-wheel drive vehicles also have a basic torque vectoring differential. As technology in the automotive industry improves, more vehicles are equipped with torque vectoring differentials. This allows for the wheels to grip the road for better launch and handling.

<span class="mw-page-title-main">H-drive</span> Drivetrain for off-road vehicles

An H-drive drivetrain is a system used for heavy off-road vehicles with 6×6 or 8×8 drive to supply power to each wheel station.

References

  1. Saxena, Sudhir Kumar (2009). Automobile Engineering. Laxmi Publications. ISBN   978-81-318-0709-5.