Kingpin (automotive part)

Last updated
The steering kingpin at the ends of the forked beam axle on a Ford Model T Ford 08.jpg
The steering kingpin at the ends of the forked beam axle on a Ford Model T

The kingpin (also king-pin, king pin and k pin) [1] [2] is the main pivot in the steering mechanism of a car or other vehicle.

Contents

The term is also used to refer to part of a fifth wheel coupling apparatus for a semi and its trailer or other load.

History

Originally, with the 'turntable' steering of horse-drawn wagons, this was a single pin on which the moveable axle was pivoted beneath the wagon's frame. This located the axle from side to side, but the weight of the wagon was carried on a circular wooden ring turntable surrounding this. Similar centre pivot steering was used by steam traction engines, the kingpin being mounted on the 'perch bracket' beneath the boiler. Some early cars also used centre pivot steering, although it became apparent that it was unsuitable for their increasing speeds.

Ackermann steering separates the steering movement into two pivots, one near the hub of each front wheel. The beam axle between them remains fixed relative to the chassis, linked by the suspension. Ackermann steering has the two advantages that it reduces tyre scrub, the need to drag tyres sideways across their tread when turning the steering, and also it reduced bump steer, suspension and road bumps tending to upset the steering direction. The kingpins were now fixed to the axle ends and the hub carriers pivoted upon them. Most commonly the centre of the kingpin was fixed in the axle and the hub carrier was forked to fit over this, but some vehicles, including the Ford Model T illustrated, used a forked axle and a kingpin fixed into a single piece carrier. Kingpins were always clamped in the centre and the swivel bearings at the ends, to increase the lever arm and so reduce the bearing load.

Independent front suspension developed through the 1930s, for high-performance cars at least, often using double wishbone suspension. This performance also encouraged the reduction of unsprung weight. Rather than using separate pivots for both the up-and-down motion of the suspension and the steering swivel, the use of a spherical ball joint that could move in two degrees of freedom allowed the same joint to carry out both functions. The hub carrier extended vertically to span the ends of both wishbones, with a ball joint at each end. In the 1950s and 1960s, such independent suspension became commonplace through light cars in all price ranges. Although the kingpin was no longer an identifiable physical component, suspension geometry was still designed in terms of a virtual kingpin along a line between the ball joint centres.

Scammell Pioneer heavy off-road truck Front axle, Scammell Pioneer.jpg
Scammell Pioneer heavy off-road truck

Although they are largely obsolete, kingpin suspensions have the advantage of being able to carry much heavier weights,[ dubious ] which is why they are still featured on some heavy trucks. Dana produced the kingpin version of the D60 axle until 1991. (The functionally analogous, similar looking and very robust joint between the chassis and boom on a backhoe is however referred to as a king post.)

The nipple at the front of a semi-trailer to connect to a fifth wheel coupling on a tractor unit is also known as a kingpin, which usage is analogous to the original horse-drawn wagon and traction engine steering use. [1]

Kingpin inclination

While no current-era automobile front suspension incorporates a physical kingpin, the axis defined by the steering knuckle pivot points acts a "virtual kingpin" about which the wheel turns. This virtual kingpin is inclined toward the centerline of the vehicle at an angle called the kingpin angle. Virtual or physical, the kingpin angle may also be referred to by its initialism KPA, kingpin inclination (KPI), or steering axis inclination (SAI), and remains a fundamental vehicle design parameter. On most modern designs, the kingpin angle is set relative to the vertical, as viewed from the front or back of the vehicle, and it is not adjustable, changing only if the wheel spindle or steering knuckles are bent.[ citation needed ]

The kingpin angle has an important effect on steering, making it tend to return to the straight ahead or centre position because the straight ahead position is where the suspended body of the vehicle is at its lowest point. Thus, the weight of the vehicle tends to rotate the wheel about the kingpin back to this position. The kingpin inclination also contributes to the scrub radius of the steered wheel, the distance between the centre of the tyre contact patch and where the kingpin axis intersects the ground. If these points coincide, the scrub radius is zero.

As a biological metaphor

Zoologist Nicholas Humphrey introduced his 1976 paper "The Social Functions of Intellect" with the following anecdote:

Henry Ford, it is said, commissioned a survey of the car scrap-yards of America to find out if there were parts of the Model T Ford which never failed. His inspectors came back with reports of almost every kind of failure: axles, brakes, pistons all were liable to go wrong. But they drew attention to one notable exception, the kingpins of the scrapped cars invariably had years of life left in them. With ruthless logic Ford concluded that the kingpins on the Model T were too good for their job and ordered that in future they should be made to an inferior specification. [3]

Humphrey used the metaphor to introduce the idea of the efficiency of resource allocation by natural selection ("Nature is surely at least as careful an economist as Henry Ford"). The metaphor has been cited by several prominent science writers including Richard Dawkins, [4] John Barrow, [5] and Jared Diamond. [6] Biologists Robert A. Laird and Thomas N. Sherratt have questioned both the truth of the story and the utility of the metaphor, pointing out that evolution of multicomponent systems need not result in identical component failure rates. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Bogie</span> Chassis for wheels and suspension under vehicles

A bogie is a chassis or framework that carries a wheelset, attached to a vehicle—a modular subassembly of wheels and axles. Bogies take various forms in various modes of transport. A bogie may remain normally attached or be quickly detachable. It may include a suspension component within it, or be solid and in turn be suspended ; it may be mounted on a swivel, as traditionally on a railway carriage or locomotive, additionally jointed and sprung, or held in place by other means.

<span class="mw-page-title-main">Axle</span> Central shaft for a rotating wheel or gear

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type of axle is referred to as a spindle.

<span class="mw-page-title-main">Ackermann steering geometry</span> Arrangement of steering linkages

The Ackermann steering geometry is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radii.

<span class="mw-page-title-main">MacPherson strut</span> Type of automotive suspension design

The MacPherson strut is a type of automotive suspension system that uses the top of a telescopic damper as the upper steering pivot. It is widely used in the front suspension of modern vehicles. The name comes from American automotive engineer Earle S. MacPherson, who invented and developed the design.

<span class="mw-page-title-main">Steering</span> The control of the direction of motion of vehicles and other objects

Steering is the control of the direction of locomotion or the components that enable its control. Steering is achieved through various arrangements, among them ailerons for airplanes, rudders for boats, tilting rotors for helicopters, and many more.

<span class="mw-page-title-main">Independent suspension</span> Vehicle suspension in which each wheel is suspended independently

Independent suspension is any automobile suspension system that allows each wheel on the same axle to move vertically independently of the others. This is contrasted with a beam axle or deDion axle system in which the wheels are linked. "Independent" refers to the motion or path of movement of the wheels or suspension. It is common for the left and right sides of the suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the left and right suspension spring rates together but does not tie their motion together.

<span class="mw-page-title-main">Caster</span> Undriven wheel that is designed to be attached to the bottom of a larger object

A caster is an undriven wheel that is designed to be attached to the bottom of a larger object to enable that object to be moved.

<span class="mw-page-title-main">Double wishbone suspension</span> Automotive independent suspension design

A double wishbone suspension is an independent suspension design for automobiles using two wishbone-shaped arms to locate the wheel. Each wishbone or arm has two mounting points to the chassis and one joint at the knuckle. The shock absorber and coil spring mount to the wishbones to control vertical movement. Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel, controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more.

<span class="mw-page-title-main">Caster angle</span> The angle between the vertical axis and the steering axis of a steered wheel, in side view

The caster angle or castor angle is the angular displacement of the steering axis from the vertical axis of a steered wheel in a car, motorcycle, bicycle, other vehicle or a vessel, as seen from the side of the vehicle. The steering axis in a car with dual ball joint suspension is an imaginary line that runs through the center of the upper ball joint to the center of the lower ball joint, or through the center of the kingpin for vehicles having a kingpin.

<span class="mw-page-title-main">Chapman strut</span> Type of automotive suspension design

The Chapman strut is a design of independent rear suspension used for light cars, particularly sports and racing cars. It takes its name from, and is best known for its use by, Colin Chapman of Lotus.

A swing axle is a simple type of independent suspension designed and patented by Edmund Rumpler in 1903. This was a revolutionary invention in automotive suspension, allowing driven (powered) wheels to follow uneven road surfaces independently, thus enabling the vehicle's wheels to maintain better road contact and holding; plus each wheel's reduced unsprung weight means their movements have less impact on the vehicle as a whole. The first automotive application was the Rumpler Tropfenwagen, later followed by the Mercedes 130H/150H/170H, the Standard Superior, the Volkswagen Beetle and its derivatives, the Chevrolet Corvair, and the roll-over prone M151 jeep amongst others.

Torque steer is the unintended influence of engine torque on the steering, especially in front-wheel-drive vehicles. For example, during heavy acceleration, the steering may pull to one side, which may be disturbing to the driver. The effect is manifested either as a tugging sensation in the steering wheel, or a veering of the vehicle from the intended path. Torque steer is directly related to differences in the forces in the contact patches of the left and right drive wheels. The effect becomes more evident when high torques are applied to the drive wheels because of a high overall reduction ratio between the engine and wheels, high engine torque, or some combination of the two. Torque steer is distinct from steering kickback.

<span class="mw-page-title-main">Beam axle</span> Automobile mechanism

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

<span class="mw-page-title-main">Ball joint</span> Spherical bearing most commonly used in automobile steering mechanisms

In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles, and are used on virtually every automobile made. They bionically resemble the ball-and-socket joints found in most tetrapod animals.

The scrub radius is the distance in front view between the king pin axis and the center of the contact patch of the wheel, where both would theoretically touch the road. It can be positive, negative or zero.

<span class="mw-page-title-main">Jaguar independent rear suspension</span> Common component of a number of Jaguar production cars since 1961

Jaguar's independent rear suspension (IRS) unit has been a common component of a number of Jaguar production cars since 1961, passing through two major changes of configuration up to 2006 and last used in the Jaguar XK8 and Aston Martin DB7. This article concentrates on the first generation Jaguar IRS, which firmly established the marque's reputation for suspension sophistication, combining as it did smooth ride with excellent roadholding and low levels of noise, vibration, and harshness (NVH). The two generations overlap in time due to their being used in both full size and sports models that were updated at different times.

<span class="mw-page-title-main">Transverse leaf spring front suspension</span>

Transverse leaf spring front suspension is a type of automotive front suspension, whose usage is most well known in Ford Motor Company products from 1908 to 1948. "Suicide front axle" is a term that has been used for it.

<span class="mw-page-title-main">Clément-Panhard</span> Motor vehicle

Clément-Panhard is an automobile designed in 1898 by Arthur Constantin Krebs, manager of Panhard & Levassor co, from his 1896 patent of a car fitted with an electromagnetic gearbox, whose licence was acquired by Émile Levassor.

<span class="mw-page-title-main">H-drive</span> Drivetrain for off-road vehicles

An H-drive drivetrain is a system used for heavy off-road vehicles with 6×6 or 8×8 drive to supply power to each wheel station.

Dual-pivot steering geometry is a geometric arrangement of linkages in the steering of a car designed to reduce or eliminate scrub radius by moving the pivot point of the king pin outboard, in order to improve steering precision and straight line stability.

References

  1. 1 2 Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. king-pin: that which holds together any complex system or arrangement. 1958 Engineering 28 Feb. 265/3 Another remarkable feature of the design is a front suspension which uses telescopic dampers as the king pins and steering swivels.
  2. "Random House Dictionary: kingpin". Random House, Inc. 2010. Retrieved 2010-03-25.
  3. Humphrey, Nicholas K. (1976), "The Social Function of Intellect" (PDF), in Bateson, P. P. G.; Hinde, Robert A. (eds.), Growing points in ethology: based on a conference sponsored by St. John's College and King's College, Cambridge, CambridgeUP, p. 303, ISBN   9780521290869, OCLC   2562833 , reproduced in Humphrey, N. 1983. Consciousness regained: chapters in the development of mind. Oxford Univ. Press.
  4. Dawkins, Richard (1995), River Out of Eden: a Darwinian view of life, Science Masters Series, Basic Books, ISBN   9780465069903, OCLC   31376584
  5. Barrow, John D. (1995), The artful universe : the cosmic source of human creativity, Back Bay Books, ISBN   9780316082426, OCLC   35767760
  6. Diamond, Jared M. (1997), Why Is Sex Fun?  : the evolution of human sexuality, HarperCollins, ISBN   9780465031276, OCLC   35750426
  7. Laird, R. A.; Sherratt, T. N. (2010). "The economics of evolution: Henry Ford and the Model T". Oikos. 119 (1): 3–9. Bibcode:2010Oikos.119....3L. CiteSeerX   10.1.1.706.6368 . doi:10.1111/j.1600-0706.2009.17613.x.