Stub network

Last updated

A stub network, or pocket network, is a somewhat casual term describing a computer network, or part of an internetwork, with no knowledge of other networks, that will typically send much or all of its non-local traffic out via a single path, with the network aware only of a default route to non-local destinations. As a practical analogy, think of an island which is connected to the rest of the world through a bridge and no other path is available either through air or sea. Continuing this analogy, the island might have more than one physical bridge to the mainland, but the set of bridges still represents only one logical path.

See also

Related Research Articles

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

<span class="mw-page-title-main">Router (computing)</span> Device that forwards data packets between computer networks

A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions between networks and on the global Internet. Data sent through a network, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

<span class="mw-page-title-main">Border Gateway Protocol</span> Protocol for communicating routing information on the Internet

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. BGP is classified as a path-vector routing protocol, and it makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router inform its neighbours of network topology changes periodically.

Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).

An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain, that presents a common and clearly defined routing policy to the Internet. Each AS is assigned an autonomous system number (ASN), for use in Border Gateway Protocol (BGP) routing. Autonomous System Numbers are assigned to Local Internet Registries (LIRs) and end-user organizations by their respective Regional Internet Registries (RIRs), which in turn receive blocks of ASNs for reassignment from the Internet Assigned Numbers Authority (IANA). The IANA also maintains a registry of ASNs which are reserved for private use.

<span class="mw-page-title-main">Optimized Link State Routing Protocol</span> IP routing protocol optimized for mobile ad hoc networks

The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.

Administrative distance (AD) or route preference is a number of arbitrary unit assigned to dynamic routes, static routes and directly-connected routes. The value is used in routers to rank routes from most preferred to least preferred. When multiple paths to the same destination are available in its routing table, the router uses the route with the lowest administrative distance.

The link-state advertisement (LSA) is a basic communication means of the OSPF routing protocol for the Internet Protocol (IP). It communicates the router's local routing topology to all other local routers in the same OSPF area. OSPF is designed for scalability, so some LSAs are not flooded out on all interfaces, but only on those that belong to the appropriate area. In this way detailed information can be kept localized, while summary information is flooded to the rest of the network. The original IPv4-only OSPFv2 and the newer IPv6-compatible OSPFv3 have broadly similar LSA types.

In computer networking, ingress filtering is a technique used to ensure that incoming packets are actually from the networks from which they claim to originate. This can be used as a countermeasure against various spoofing attacks where the attacker's packets contain fake IP addresses. Spoofing is often used in denial-of-service attacks, and mitigating these is a primary application of ingress filtering.

In Internet routing, the default-free zone (DFZ) is the collection of all Internet autonomous systems (AS) that do not require a default route to route a packet to any destination. Conceptually, DFZ routers have a "complete" Border Gateway Protocol table, sometimes referred to as the Internet routing table, global routing table or global BGP table. However, internet routing changes rapidly and the widespread use of route filtering ensures that no router has a complete view of all routes. Any routing table created would look different from the perspective of different routers, even if a stable view could be achieved.

<span class="mw-page-title-main">Flooding (computer networking)</span> Simple routing algorithm sending incoming packets to all other links than the sender

Flooding is used in computer network routing algorithms in which every incoming packet is sent through every outgoing link except the one it arrived on.

A routing protocol specifies how routers communicate with each other to distribute information that enables them to select paths between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.

IP routing is the application of routing methodologies to IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained from routing protocols to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks.

An interior gateway protocol (IGP) or Interior routing protocol is a type of routing protocol used for exchanging routing table information between gateways within an autonomous system. This routing information can then be used to route network-layer protocols like IP.

The Recursive InterNetwork Architecture (RINA) is a new computer network architecture proposed as an alternative to the architecture of the currently mainstream Internet protocol suite. The principles behind RINA were first presented by John Day in his 2008 book Patterns in Network Architecture: A return to Fundamentals. This work is a start afresh, taking into account lessons learned in the 35 years of TCP/IP’s existence, as well as the lessons of OSI’s failure and the lessons of other network technologies of the past few decades, such as CYCLADES, DECnet, and Xerox Network Systems. RINA's fundamental principles are that computer networking is just Inter-Process Communication or IPC, and that layering should be done based on scope/scale, with a single recurring set of protocols, rather than based on function, with specialized protocols. The protocol instances in one layer interface with the protocol instances on higher and lower layers via new concepts and entities that effectively reify networking functions currently specific to protocols like BGP, OSPF and ARP. In this way, RINA claims to support features like mobility, multihoming and quality of service without the need for additional specialized protocols like RTP and UDP, as well as to allow simplified network administration without the need for concepts like autonomous systems and NAT.

References

  1. Weekly Routing Report, Routing Analysis Role Account

[1]

[2]

[3]

[4]

  1. Paluch. P, "OSPF LSA Type 1 - Stub Network", November 2010. https://community.cisco.com/t5/switching/ospf-lsa-type-1-stub-network/td-p/1536761#:~:text=A%20stub%20network%20is%20a,as%20stub%20networks%20by%20OSPF.
  2. X. Liu and L. Xiao, "A Survey of Multihoming Technology in Stub Networks: Current Research and Open Issues," in IEEE Network, vol. 21, no. 3, pp. 32-40, May–June 2007, doi: 10.1109/MNET.2007.364256. https://ieeexplore.ieee.org/document/4211215
  3. "OSPF: WHAT IS A STUB NETWORK?", December 2017. https://www.networkfuntimes.com/ospf-what-is-a-stub-network/
  4. ALMEIDA, M. et al. Experimental Evaluation of the Usage of Ad Hoc Networks as Stubs for Multiservice Networks. EURASIP Journal on Wireless Communications & Networking, [s. l.], p. 1–14, 2007. DOI 10.1155/2007/62967.