Sub-Doppler cooling

Last updated

Sub-Doppler cooling is a class of laser cooling techniques that reduce the temperature of atoms and molecules below the Doppler cooling limit. In experiment implementation, Doppler cooling is limited by the broad natural linewidth of the lasers used in cooling. [1] Regardless of the transition used, however, Doppler cooling processes have an intrinsic cooling limit that is characterized by the momentum recoil from the emission of a photon from the particle. This is called the recoil temperature and is usually far below the linewidth-based limit mentioned above. [2]

Methods of sub-Doppler cooling include optical molasses, Sisyphus cooling, evaporative cooling, free space Raman cooling, Raman side-band cooling, resolved sideband cooling, polarization gradient cooling, and the use of a dark magneto-optical trap.

For example, an optical molasses time-of-flight technique was used to cool sodium (Doppler limit ) to . [3]

Motivations for sub-doppler cooling include motional ground state cooling, cooling to the motional ground state, a requirement for maintaining fidelity during many quantum computation operations.

Dark magneto-optical trap

A magneto-optical trap (MOT) is commonly used for cooling and trapping a substance by Doppler cooling. In the process of Doppler cooling, the red detuned light would be absorbed by atoms from one certain direction and re-emitted in a random direction. The electrons of the atoms would decay to an alternative ground states if the atoms have more than one hyperfine ground level. There is the case of all the atoms in the other ground states rather than the ground states of Doppler cooling, then system cannot cool the atoms further.

In order to solve this problem, the other re-pumping light would be incident on the system to repopulate the atoms to restart the Doppler cooling process. This would induce higher amounts of fluorescence being emitted from the atoms which can be absorbed by other atoms, acting as a repulsive force. Due to this problem, the Doppler limit would increase and is easy to meet. When there is a dark spot or lines on the shape of the re-pumping light, the atoms in the middle of the atomic gas would not be excited by the re-pumping light which can decrease the repulsion force from the previous cases.

This can help to cool the atoms to a lower temperature than the typical Doppler cooling limit. This is called a dark magneto-optical trap (DMOT). [4]

Related Research Articles

<span class="mw-page-title-main">Bose–Einstein condensate</span> State of matter

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero. Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum-mechanical phenomena, particularly wavefunction interference, become apparent macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.

<span class="mw-page-title-main">Laser cooling</span> Class of methods for cooling atoms to very low temperatures

Laser cooling includes several techniques where atoms, molecules, and small mechanical systems are cooled with laser light. The directed energy of lasers is often associated with heating materials, e.g. laser cutting, so it can be counterintuitive that laser cooling often results in sample temperatures approaching absolute zero. It is a routine step in many atomic physics experiments where the laser-cooled atoms are then subsequently manipulated and measured, or in technologies, such as atom-based quantum computing architectures. Laser cooling relies on the change in momentum when an object, such as an atom, absorbs and re-emits a photon. For example, if laser light illuminates a warm cloud of atoms from all directions and the laser's frequency is tuned below an atomic resonance, the atoms will be cooled. This common type of laser cooling relies on the Doppler effect where individual atoms will preferentially absorb laser light from the direction opposite to the atom's motion. The absorbed light is re-emitted by the atom in a random direction. After repeated emission and absorption of light the net effect on the cloud of atoms is that they will expand more slowly. The slower expansion reflects a decrease in the velocity distribution of the atoms, which corresponds to a lower temperature and therefore the atoms have been cooled. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity, therefore the lower the distribution of velocities, the lower temperature of the particles.

<span class="mw-page-title-main">Evaporative cooling (atomic physics)</span> Atomic physics technique to achieve high phase space densities

Evaporative cooling is an atomic physics technique to achieve high phase space densities which optical cooling techniques alone typically can not reach.

Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.

<span class="mw-page-title-main">Electromagnetically induced transparency</span>

Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium.

In condensed matter physics and atomic physics, the recoil temperature is a fundamental lower limit of temperature attainable by some laser cooling schemes. It is the temperature corresponding to the kinetic energy imparted to an atom initially at rest by the spontaneous emission of a photon. The recoil temperature is

<span class="mw-page-title-main">Optical parametric oscillator</span>

An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.

<span class="mw-page-title-main">Optical molasses</span> Laser technique cooling atoms to temperatures lower than a magneto-optical trap

Optical molasses is a laser cooling technique that can cool neutral atoms to as low as a few microkelvin, depending on the atomic species. An optical molasses consists of 3 pairs of counter-propagating circularly polarized laser beams intersecting in the region where the atoms are present. The main difference between optical molasses and an MOT is the absence of magnetic field in the former. Therefore, unlike a MOT, an optical molasses provides only cooling and no trapping.

<span class="mw-page-title-main">Optical lattice</span> Atomic-scale structure formed through the Stark shift by opposing beams of light

An optical lattice is formed by the interference of counter-propagating laser beams, creating a spatially periodic polarization pattern. The resulting periodic potential may trap neutral atoms via the Stark shift. Atoms are cooled and congregate at the potential extrema. The resulting arrangement of trapped atoms resembles a crystal lattice and can be used for quantum simulation.

<span class="mw-page-title-main">Doppler cooling</span> Laser cooling technique

Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques.

<span class="mw-page-title-main">Magneto-optical trap</span> Apparatus for trapping and cooling neutral atoms

In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially-varying magnetic field to create a trap which can produce samples of cold, neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvin, depending on the atomic species, which is two or three times below the photon recoil limit. However, for atoms with an unresolved hyperfine structure, such as 7Li, the temperature achieved in a MOT will be higher than the Doppler cooling limit.

In condensed matter physics, an ultracold atom is an atom with a temperature near absolute zero. At such temperatures, an atom's quantum-mechanical properties become important.

In experimental physics, a magnetic trap is an apparatus which uses a magnetic field gradient to trap neutral particles with magnetic moments. Although such traps have been employed for many purposes in physics research, they are best known as the last stage in cooling atoms to achieve Bose–Einstein condensation. The magnetic trap was first proposed by David E. Pritchard.

<span class="mw-page-title-main">Sisyphus cooling</span> Type of laser cooling

In ultra-low-temperature physics, Sisyphus cooling, the Sisyphus effect, or polarization gradient cooling involves the use of specially selected laser light, hitting atoms from various angles to both cool and trap them in a potential well, effectively rolling the atom down a hill of potential energy until it has lost its kinetic energy. It is a type of laser cooling of atoms used to reach temperatures below the Doppler cooling limit. This cooling method was first proposed by Claude Cohen-Tannoudji in 1989, motivated by earlier experiments which observed sodium atoms cooled below the Doppler limit in an optical molasses. Cohen-Tannoudji received part of the Nobel Prize in Physics in 1997 for his work. The technique is named after Sisyphus, a figure in the Greek mythology who was doomed, for all eternity, to roll a stone up a mountain only to have it roll down again whenever he got it near the summit.

<span class="mw-page-title-main">Zeeman slower</span> Instrument for slowing and cooling a beam of hot atoms

In atomic physics, a Zeeman slower is a scientific instrument that is commonly used in atomic physics to slow and cool a beam of hot atoms to speeds of several meters per second and temperatures below a kelvin. The gas-phase atoms used in atomic physics are often generated in an oven by heating a solid or liquid atomic sample to temperatures where the vapor pressure is high enough that a substantial number of atoms are in the gas phase. These atoms effuse out of a hole in the oven with average speeds on the order of hundreds of m/s and large velocity distributions. The Zeeman slower is attached close to where the hot atoms exit the oven and are used to slow them to less than 10 m/s (slowing) with a very small velocity spread (cooling).

In atomic physics, Raman cooling is a sub-recoil cooling technique that allows the cooling of atoms using optical methods below the limitations of Doppler cooling, Doppler cooling being limited by the recoil energy of a photon given to an atom. This scheme can be performed in simple optical molasses or in molasses where an optical lattice has been superimposed, which are called respectively free space Raman cooling and Raman sideband cooling. Both techniques make use of Raman scattering of laser light by the atoms.

In optical physics, laser detuning is the tuning of a laser to a frequency that is slightly off from a quantum system's resonant frequency. When used as a noun, the laser detuning is the difference between the resonance frequency of the system and the laser's optical frequency. Lasers tuned to a frequency below the resonant frequency are called red-detuned, and lasers tuned above resonance are called blue-detuned.

Gray molasses is a method of sub-Doppler laser cooling of atoms. It employs principles from Sisyphus cooling in conjunction with a so-called "dark" state whose transition to the excited state is not addressed by the resonant lasers. Ultracold atomic physics experiments on atomic species with poorly-resolved hyperfine structure, like isotopes of lithium and potassium, often utilize gray molasses instead of Sisyphus cooling as a secondary cooling stage after the ubiquitous magneto-optical trap (MOT) to achieve temperatures below the Doppler limit. Unlike a MOT, which combines a molasses force with a confining force, a gray molasses can only slow but not trap atoms; hence, its efficacy as a cooling mechanism lasts only milliseconds before further cooling and trapping stages must be employed.

Polarization gradient cooling is a technique in laser cooling of atoms. It was proposed to explain the experimental observation of cooling below the doppler limit. Shortly after the theory was introduced experiments were performed that verified the theoretical predictions. While Doppler cooling allows atoms to be cooled to hundreds of microkelvin, PG cooling allows atoms to be cooled to a few microkelvin or less.

References

  1. Letokhov, V. S.; Minogin, V. G.; Pavlik, B. D. (1977). "Cooling and capture of atoms and molecules by a resonant light field". Soviet Physics JETP . 45: 698. Bibcode:1977JETP...45..698L.
  2. Metcalf and van der Straten (1999). Laser Cooling and Trapping. New York: Springer-Verlag. ISBN   0-387-98728-2.
  3. Lett, Paul D.; Watts, Richard N.; Westbrook, Christoph I.; Phillips, William D.; Gould, Phillip L.; Metcalf, Harold J. (1988-07-11). "Observation of Atoms Laser Cooled below the Doppler Limit". Phys. Rev. Lett. 61 (2): 169–172. doi: 10.1103/PhysRevLett.61.169 . PMID   10039050.
  4. Shengwang Du, Shanchao Zhang, Shuyu Zhou, Guang Yu Yin, and Chinmay Belthangady, "Two-dimensional magneto-optical trap for neutral atoms," US Patent No.: US 8,835,833 B2 (2014); China Patent Pub. No.: CN 102969038 A (2013).