Subaqueous fan

Last updated

A subaqueous fan is a fan-shaped deposit formed beneath water (similar to deltas or terrestrial alluvial fans), that is commonly related to glaciers [1] and crater lakes. [2]

Contents

Subaqueous fan deposits are generally described as coarse to fine gravel and/or sand, with variable texture and sorting. Underflows (meltwater denser than lake water) tend to produce subaqueous fans with channels and levees. [3] Subaqueous fans can be formed by the influence of glacier movement and by underwater currents typically found at a river delta. The sediment size and composition that makes up the subaqueous fan is dependent on the type of rock that the water flow or glacial ice sheet moves over. Sedimentary structures found in subaqueous fans are heavily dependent on the strength of the water flow. [4]

Glacial formation of the subaqueous fan

Background on glacial deposition

Ice is a more efficient agent of erosion compared to wind and water.  Glaciers can carry a heavy load of sediment to the ice front of the glacier.  At the ice front, as the glacier melts, sediment is deposited.  As the glacier moves through a landscape, it begins to form a U-shaped valley which is characteristic of a glacier. [5]   These valleys are wide and flat allowing for the opportunity for sediment to be displaced far from the ice front.  The sediments that are directly deposited from melting ice of the glacier is both unsorted and unstratified. [5]   These sediments are also known as till and it can be composed of variable sized rock fragments ranging from fine grains up to boulders called erratic. The wide range of particle size is the characteristic that differentiates ice deposited glacial sediment from water deposited glacial sediment. [5]

Subaqueous fan formation in proglacial lake

In the case of the subaqueous fan, the till is deposited via meltwater streams downstream of the ice front.  In this case, the sediment is well sorted and stratified and can form sedimentary structures and plains downstream.  This sediment that was transported and distributed by the meltwater is referred to as outwash. [5]

Subaqueous fans can be formed by the movement and retreat of glaciers.  Subaqueous fans are composed of many different materials based on the makeup of the glacier that deposited there.  As glaciers advance over a landscape, they scrape the ground beneath them through abrasion.  The type of sediments that are picked up by the lobes of a glacial ice sheet are determined by the composition of the parent material that forms the bedrock in which the glacial ice sheet is moving over.  

Eventually, the glacier will retreat and leave a large pile of sediment at its furthest advance called the terminal moraine.  As the glacier retreats, it melts, allowing for meltwater to flow out of the bottom of the glacier to carry the sediments from the terminal moraine further into what is called an outwash plain.  In the outwash plain, these sands and gravels are deposited.  In some instances, an outwash plain can form a dam, which allows for the formation of a proglacial lake. [6]   This lake forms as glacial meltwater is trapped behind larger deposits of till that form the dam. These proglacial lakes were fed by glacial meltwater.  Larger sediments would settle out first as the water moved into the area.  This allowed for smaller sized sediments to be carried further into the proglacial lake creating the subaqueous fan. "Some proglacial lakes formed by glaciers were huge, many thousands of square kilometers in extent. [5] "

Grain size distribution

Proglacial lake setting

Figure 1: Depositional model of a subaqueous fan depicting the relationship of sediment grain size and depositional distance away from the glacial ice. SubaqueousFanDepositionalModel Gerber.png
Figure 1: Depositional model of a subaqueous fan depicting the relationship of sediment grain size and depositional distance away from the glacial ice.

The sediments that have been deposited in the proglacial lake are sorted based on both size and composition.  As seen in Figure 1, both composition of sediment and the size of sediment are dependent on the distance away from the retreating glacial ice.  The stratigraphy fines rapidly from massive gravels to cross-stratified sand from 10 meters to about 100 meters away from the glacial ice. [7]   Eventually, when distances reach approximately 1,000 meters away, the grain size becomes finer and cross laminated, fine-grained sands are often found.  As distances approach approximately a few thousand meters away from the glacial ice, graded fine sands and silts are found and eventually, silt-clays.  Bedding in this depositional setting is primarily horizontal bedding.  As you increase the distance from the glacial ice, sediment develops from heavily disorganized gravels into better organized and graded beds.  

This difference in bedding styles can be further seen in Figure 2, which displays how water flow affects the deposition style of the sediment.  The sediment deposited closer in proximity to the glacial ice forms dunes and antidunes whereas the sediment deposited further away from the glacial ice is more likely to form horizontal beds or climbing ripples. [4]   Gravel sized sediments will settle out of the water flow first and accumulate closer to the glacial ice.  This allows for the water flow to carry smaller sediments further from the glacial ice. [4]  

Figure 2: Depositional model of a subaqueous fan with emphasis on sedimentary structure and water flow. SubaqueousFanWaterFlow Lang.jpg
Figure 2: Depositional model of a subaqueous fan with emphasis on sedimentary structure and water flow.

After the gravel sediment accumulates, continued strong glacial meltwater current will form dunes.  As the sediment that was carried and deposited further from the glacial ice settles out, the sediment will form climbing ripples.  The ripples move downstream over time, and as more sediment settles out on top of the preexisting ripples, it causes the bed to appear to climb.  Climbing ripples often occur in finer grained sediments. [8]   This occurs because the glacial meltwater current becomes much weaker the further away it is from the glacial ice source.  These two distinct styles of bedding are heavily dependent on the distance away from the glacial ice and the strength of the meltwater.

Glaciers can also deposit smaller sized grains such as clay and silt in a proglacial lake at the edge of the ice.  This area is known for alternating fine and coarse grained layers called varves that are formed by the seasonal freezing of the proglacial lake surface. [5]

Extraterrestrial subaqueous fans

Figure 3: The Mississippi River delta includes these underwater alluvial fans which are denoted by the light brown areas on this satellite imagery from the United States Geological Survey (USGS) and the National Aeronautics and Space Association (NASA). 4701-TP-Fig3.png
Figure 3: The Mississippi River delta includes these underwater alluvial fans which are denoted by the light brown areas on this satellite imagery from the United States Geological Survey (USGS) and the National Aeronautics and Space Association (NASA).

Subaqueous fans have been discovered on Mars. Even though the presence of surface water is currently lacking on Mars, there have been multiple observations that lead to the revelation that there once was liquid water present on the planet's surface. One of these revelations includes the characteristics of ancient lakes such as hydrated minerals found in these basin regions.

Although there have been several fan complexes found on Mars, there were two with morphology characteristics very different from the already identified fans on the planet. [10] Identification of these depositional fans occurred at the bottom of the Southwestern region of the Melas Chasma (an enclosed basin in this canyon). Features of these subaqueous fans include several elongated lobes consisting of turbidite deposits and dendritic terminations. [10] After extensive comparison with the subaqueous fan complex present at the mouth of the Mississippi River (shown in Figure 3), these fans proved to be consistent with a deep subaqueous fan depositional system.  

Subclass of subaqueous fans

Figure 4: Demonstrates how debris flow induces turbidity currents which results in turbidite deposits. Linked debrite diagram.gif
Figure 4: Demonstrates how debris flow induces turbidity currents which results in turbidite deposits.

These fan-shaped deposits refer to those that are underwater, leaving a broad range of options to fall under this category. A subclass of subaqueous fans may include underwater fan formations that are found on the ocean floor which can be specifically referred to as submarine or abyssal fans. These fan formations can be quite massive and are often the result of turbidite deposits from underwater density currents such as turbidity currents. [11] These currents are typically short-lived, but are able to distribute great amounts of sediment into the deep ocean (Figure 4) making them a massive contributor to submarine fan formation. [11] An important process that leads to density currents and ultimately submarine fan formation includes shelf-edge sediment failure which initiates mass movements of sediment (sometimes referred to as debris flow). [12] These kinds of failures often occur when continental shelves or submarine canyons lose their stability from too much sediment accumulation. [11] This is why submarine fans are often found at the base of continental shelves and submarine canyons. Submarine fan formations are known to be strong indicators of tectonic and climatic fluctuations as well. [12]

Related Research Articles

<span class="mw-page-title-main">Moraine</span> Glacially formed accumulation of debris

A moraine is any accumulation of unconsolidated debris, sometimes referred to as glacial till, that occurs in both currently and formerly glaciated regions, and that has been previously carried along by a glacier or ice sheet. It may consist of partly rounded particles ranging in size from boulders down to gravel and sand, in a groundmass of finely-divided clayey material sometimes called glacial flour. Lateral moraines are those formed at the side of the ice flow, and terminal moraines were formed at the foot, marking the maximum advance of the glacier. Other types of moraine include ground moraines and medial moraines.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Till</span> Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

<span class="mw-page-title-main">Sediment</span> Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

A kame delta is a glacial landform formed by a stream of melt water flowing through or around a glacier and depositing material, known as kame deposits. Upon entering a proglacial lake at the end (terminus) of a glacier, the river/stream deposit these sediments. This landform can be observed after the glacier has melted and the delta's asymmetrical triangular shape is visible. Once the glacier melts, the edges of the delta may subside as ice under it melts. Glacial till is deposited on the lateral sides of the delta, as the glacier melts.

<span class="mw-page-title-main">Oak Ridges Moraine</span> Glacial till landform above Lake Ontario, Canada

The Oak Ridges Moraine is an ecologically important geological landform in the Mixedwood Plains of south-central Ontario, Canada. The moraine covers a geographic area of 1,900 square kilometres (730 sq mi) between Caledon and Rice Lake, near Peterborough. One of the most significant landforms in southern Ontario, the moraine gets its name from the rolling hills and river valleys extending 160 km (99 mi) east from the Niagara Escarpment to Rice Lake, formed 12,000 years ago by advancing and retreating glaciers during the last glaciation period. Below the approximately 200 metre thick glacial derived sediments of the moraine lies thick bedrock successions of Precambrian rocks and up to 200 metres of Ordovician aged rock, capped by a regional unconformity of erosion and non-deposition to the Quaternary period. Rivers and lakes scatter the landscape and are important for creating habitat for the rich diversity of species of animals, trees and shrubbery. These are also the supply of fresh water to aquifers in the moraine through complex subterranean connections. Construction development nearby, and with expansion of communities around the moraine in need of potable water, it is a contested site in Ontario, since it stands in the path of major urban development. Conservation of the moraine is thus an important step for keeping aquifers in a safe drinkable condition while also protecting the natural ecosystems surrounding and within the moraine. This region has been subject to multiple decades of scientific research to study the origins of formation, and how early communities used the land. A larger focus currently is how to source potable water without removing the aquifer entirely.

<span class="mw-page-title-main">Conglomerate (geology)</span> Sedimentary rock composed of smaller rock fragments

Conglomerate is a clastic sedimentary rock that is composed of a substantial fraction of rounded to subangular gravel-size clasts. A conglomerate typically contains a matrix of finer-grained sediments, such as sand, silt, or clay, which fills the interstices between the clasts. The clasts and matrix are typically cemented by calcium carbonate, iron oxide, silica, or hardened clay.

<span class="mw-page-title-main">Turbidite</span> Geologic deposit of a turbidity current

A turbidite is the geologic deposit of a turbidity current, which is a type of amalgamation of fluidal and sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean.

<span class="mw-page-title-main">Outwash plain</span> Plain formed from glacier sediment transported by meltwater

An outwash plain, also called a sandur, sandr or sandar, is a plain formed of glaciofluvial deposits due to meltwater outwash at the terminus of a glacier. As it flows, the glacier grinds the underlying rock surface and carries the debris along. The meltwater at the snout of the glacier deposits its load of sediment over the outwash plain, with larger boulders being deposited near the terminal moraine, and smaller particles travelling further before being deposited. Sandurs are common in Iceland where geothermal activity accelerates the melting of ice flows and the deposition of sediment by meltwater.

<span class="mw-page-title-main">Glacial landform</span> Landform created by the action of glaciers

Glacial landforms are landforms created by the action of glaciers. Most of today's glacial landforms were created by the movement of large ice sheets during the Quaternary glaciations. Some areas, like Fennoscandia and the southern Andes, have extensive occurrences of glacial landforms; other areas, such as the Sahara, display rare and very old fossil glacial landforms.

Parent material is the underlying geological material in which soil horizons form. Soils typically inherit a great deal of structure and minerals from their parent material, and, as such, are often classified based upon their contents of consolidated or unconsolidated mineral material that has undergone some degree of physical or chemical weathering and the mode by which the materials were most recently transported.

The Oak Ridges Moraine is a geological landform that runs east-west across south central Ontario, Canada. It developed about 12,000 years ago, during the Wisconsin glaciation in North America. A complex ridge of sedimentary material, the moraine is known to have partially developed under water. The Niagara Escarpment played a key role in forming the moraine in that it acted as a dam for glacial meltwater trapped between it and two ice lobes.

<span class="mw-page-title-main">Terminal moraine</span> Type of moraine that forms at the terminal of a glacier

A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment. Because the glacier acts very much like a conveyor belt, the longer it stays in one place, the greater the amount of material that will be deposited. The moraine is left as the marking point of the terminal extent of the ice.

<span class="mw-page-title-main">Outwash fan</span> Type of sediment deposition by a melting glacier

An outwash fan is a fan-shaped body of sediments deposited by braided streams from a melting glacier. Sediment locked within the ice of the glacier gets transported by the streams of meltwater, and deposits on the outwash plain, at the terminus of the glacier. The outwash, the sediment transported and deposited by the meltwater and that makes up the fan, is usually poorly sorted due to the short distance traveled before being deposited.

<span class="mw-page-title-main">Tunnel valley</span> Glacial-formed geographic feature

A tunnel valley is a U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. They can be as long as 100 km (62 mi), 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep.

<span class="mw-page-title-main">Cross-bedding</span> Sedimentary rock strata at differing angles

In geology, cross-bedding, also known as cross-stratification, is layering within a stratum and at an angle to the main bedding plane. The sedimentary structures which result are roughly horizontal units composed of inclined layers. The original depositional layering is tilted, such tilting not being the result of post-depositional deformation. Cross-beds or "sets" are the groups of inclined layers, which are known as cross-strata.

<span class="mw-page-title-main">Depositional environment</span> Processes associated with the deposition of a particular type of sediment

In geology, depositional environment or sedimentary environment describes the combination of physical, chemical, and biological processes associated with the deposition of a particular type of sediment and, therefore, the rock types that will be formed after lithification, if the sediment is preserved in the rock record. In most cases, the environments associated with particular rock types or associations of rock types can be matched to existing analogues. However, the further back in geological time sediments were deposited, the more likely that direct modern analogues are not available.

Fluvioglacial landforms or glaciofluvial landforms are those that result from the associated erosion and deposition of sediments caused by glacial meltwater. Glaciers contain suspended sediment loads, much of which is initially picked up from the underlying landmass. Landforms are shaped by glacial erosion through processes such as glacial quarrying, abrasion, and meltwater. Glacial meltwater contributes to the erosion of bedrock through both mechanical and chemical processes. Fluvio-glacial processes can occur on the surface and within the glacier. The deposits that happen within the glacier are revealed after the entire glacier melts or partially retreats. Fluvio-glacial landforms and erosional surfaces include: outwash plains, kames, kame terraces, kettle holes, eskers, varves, and proglacial lakes.

The glacial series refers to a particular sequence of landforms in Central Europe that were formed during the Pleistocene glaciation beneath the ice sheets, along their margins and on their forelands during each glacial advance.

References

  1. Russell, H.A.J.; Arnott, R.W.C. (2003). "Hydraulic-jump and hyperconcentrated-flow deposits of a glacigenic subaqueous fan: Oak Ridges Moraine, southern Ontario, Canada". Journal of Sedimentary Research. 73 (6): 887–905. Bibcode:2003JSedR..73..887R. doi:10.1306/041103730887.
  2. White, James D. L. (1992). "Pliocene subaqueous fans and Gilbert-type deltas in maar crater lakes, Hopi Buttes, Navajo Nation (Arizona), USA". Sedimentology. 39 (5): 931–946. Bibcode:1992Sedim..39..931W. doi:10.1111/j.1365-3091.1992.tb02160.x.
  3. Huddart, David; Stott, Tim (2013). Earth Environments: Past, Present and Future. John Wiley & Sons. ISBN   978-1-118-68812-0.
  4. 1 2 3 Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta (2017-12-01). "3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data". Sedimentary Geology. 362: 83–100. Bibcode:2017SedG..362...83L. doi: 10.1016/j.sedgeo.2017.10.011 . ISSN   0037-0738.
  5. 1 2 3 4 5 6 Jordan, Thomas H. (2018). The Essential Earth. New York, NY: W.H. Freeman and Company. pp. 337–342. ISBN   9781429255240.
  6. Davies, Bethan. "Glacier hydrology". AntarcticGlaciers.org. Retrieved 2020-11-24.
  7. Gerber, Richard E.; Sharpe, David R.; Russell, Hazen A.J.; Holysh, Steve; Khazaei, Esmaeil (July 2018). "Conceptual hydrogeological model of the Yonge Street Aquifer, south-central Ontario: a glaciofluvial channel–fan setting". Canadian Journal of Earth Sciences. 55 (7): 730–767. Bibcode:2018CaJES..55..730G. doi: 10.1139/cjes-2017-0172 . ISSN   0008-4077.
  8. Ashley, Gail M.; Southard, John B.; Boothroyd, Jon C. (1982). "Deposition of climbing-ripple beds: a flume simulation". Sedimentology. 29 (1): 67–79. Bibcode:1982Sedim..29...67A. doi:10.1111/j.1365-3091.1982.tb01709.x. ISSN   1365-3091.
  9. "alluvial fan". National Geographic Society. 2013-08-01. Retrieved 2020-11-25.
  10. 1 2 Metz, Joannah M.; Grotzinger, John P.; Mohrig, David; Milliken, Ralph; Prather, Bradford; Pirmez, Carlos; McEwen, Alfred S.; Weitz, Catherine M. (2009). "Sublacustrine depositional fans in southwest Melas Chasma". Journal of Geophysical Research: Planets. 114 (E10). Bibcode:2009JGRE..11410002M. doi: 10.1029/2009JE003365 . ISSN   2156-2202.
  11. 1 2 3 "Density current - Denmark Strait overflow current". Encyclopedia Britannica. Retrieved 2020-12-18.
  12. 1 2 "Submarine Fans and Canyon-Channel Systems: A Review of Processes, Products, and Models | Learn Science at Scitable". www.nature.com. Retrieved 2020-12-18.