Sublimation sandwich method

Last updated
Si is silicon, C is carbon, SiC2 is silicon dicarbide, Si2C is disilicon carbide, Ar is gaseous argon Physical vapor transport crucible-en.svg
Si is silicon, C is carbon, SiC2 is silicon dicarbide, Si2C is disilicon carbide, Ar is gaseous argon

The sublimation sandwich method (also called the sublimation sandwich process and the sublimation sandwich technique) is a kind of physical vapor deposition used for creating man-made crystals. Silicon carbide is the most common crystal grown this way, though others crystals may also be created with it (notably gallium nitride).

In this method, the environment around a single crystal or a polycrystalline plate is filled with vapor heated to between 1600°C and 2100°C-- changes to this environment can affect the gas phase stoichiometry. The source-to-crystal distance is kept between 0.02-0.03mm (very low). Parameters that can affect crystal growth include source-to-substrate distance, temperature gradient, and the presence of tantalum for gathering excess carbon. High growth rates are the result of small source-to-seed distances combined with a large heat flux onto a small amount of source material with no more than a moderate temperature difference between the substrate and the source (0.5-10°C). The growth of large boules, however, remains quite difficult using this method, and it is better suited to the creation of epitaxial films with uniform polytype structures. [1] Ultimately, samples with a thickness of up to 500µm can be produced using this method. [2]

Related Research Articles

Chemical vapor deposition chemical process used in the semiconductor industry to produce thin films

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

A metal matrix composite (MMC) is composite material with at least two constituent parts, one being a metal necessarily, the other material may be a different metal or another material, such as a ceramic or organic compound. When at least three materials are present, it is called a hybrid composite. An MMC is complementary to a cermet.

Gallium arsenide chemical compound

Gallium arsenide (GaAs) is a compound of the elements gallium and arsenic. It is a III-V direct band gap semiconductor with a zinc blende crystal structure.

Silicon carbide semiconductor containing silicon and carbon

Silicon carbide (SiC), also known as carborundum, is a semiconductor containing silicon and carbon. It occurs in nature as the extremely rare mineral moissanite. Synthetic SiC powder has been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics that are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Electronic applications of silicon carbide such as light-emitting diodes (LEDs) and detectors in early radios were first demonstrated around 1907. SiC is used in semiconductor electronics devices that operate at high temperatures or high voltages, or both. Large single crystals of silicon carbide can be grown by the Lely method and they can be cut into gems known as synthetic moissanite.

Epitaxy crystal growth process

Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with a well-defined orientation with respect to the crystalline substrate. The new layers formed are called the epitaxial film or epitaxial layer. The relative orientation of the epitaxial layer to the crystalline substrate is defined in terms of the orientation of the crystal lattice of each material. For epitaxial growth, the new layer will be crystalline and will all have a single orientation relative to the substrate; amorphous growth or multicrystalline growth with random crystal orientation does not meet this criterion.

Molecular-beam epitaxy Crystal growth process

Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. The MBE process was noticed in the late 1970s at Bell Telephone Laboratories by J. R. Arthur and J. J. LePore. This phenomenon was subsequently observed and described in detail by Alfred Y. Cho. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the development of nanotechnologies. MBE is used to fabricate diodes and MOSFETs at microwave frequencies, and to manufacture the lasers used to read optical discs.

Sublimation (phase transition) Transition from a solid to a gas

Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. Sublimation is an endothermic process that occurs at temperatures and pressures below a substance's triple point in its phase diagram, which corresponds to the lowest pressure at which the substance can exist as a liquid. The reverse process of sublimation is deposition or desublimation, in which a substance passes directly from a gas to a solid phase. Sublimation has also been used as a generic term to describe a solid-to-gas transition (sublimation) followed by a gas-to-solid transition (deposition). While a transition from liquid to gas is described as evaporation if it occurs below the boiling point of the liquid, and as boiling if it occurs at the boiling point, there is no such distinction within the solid-to-gas transition, which is always described as sublimation.

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 g/L (roughly 11 times heavier than air.) It is one of the densest known gases under standard conditions. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer serves as a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

Boule (crystal) Synthetic ingot of crystal

A boule is a single crystal ingot produced by synthetic means.

Superalloy Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Several key characteristics of a superalloy are excellent mechanical strength, resistance to thermal creep deformation, good surface stability, and resistance to corrosion or oxidation.

Chemical beam epitaxy (CBE) forms an important class of deposition techniques for semiconductor layer systems, especially III-V semiconductor systems. This form of epitaxial growth is performed in an ultrahigh vacuum system. The reactants are in the form of molecular beams of reactive gases, typically as the hydride or a metalorganic. The term CBE is often used interchangeably with metal-organic molecular beam epitaxy (MOMBE). The nomenclature does differentiate between the two processes, however. When used in the strictest sense, CBE refers to the technique in which both components are obtained from gaseous sources, while MOMBE refers to the technique in which the group III component is obtained from a gaseous source and the group V component from a solid source.

Electron-beam physical vapor deposition, or EBPVD, is a form of physical vapor deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum. The electron beam causes atoms from the target to transform into the gaseous phase. These atoms then precipitate into solid form, coating everything in the vacuum chamber with a thin layer of the anode material.

Physical vapor deposition term in physics

Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings. PVD is characterized by a process in which the material goes from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacture of items which require thin films for mechanical, optical, chemical or electronic functions. Examples include semiconductor devices such as thin film solar panels, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools have been developed.

A micropipe, also called a micropore, microtube, capillary defect or pinhole defect, is a crystallographic defect in a single crystal substrate. Today this is of great interest to makers of silicon carbide (SiC) substrates which are used in a variety of industries such as power semiconductor devices for vehicles and high frequency communication devices.

Vapor–liquid–solid method

The vapor–liquid–solid method (VLS) is a mechanism for the growth of one-dimensional structures, such as nanowires, from chemical vapor deposition. The growth of a crystal through direct adsorption of a gas phase on to a solid surface is generally very slow. The VLS mechanism circumvents this by introducing a catalytic liquid alloy phase which can rapidly adsorb a vapor to supersaturation levels, and from which crystal growth can subsequently occur from nucleated seeds at the liquid–solid interface. The physical characteristics of nanowires grown in this manner depend, in a controllable way, upon the size and physical properties of the liquid alloy.

Ultra-high-purity steam, also called clean steam, UHP steam or high purity water vapor, is used in a variety of industrial manufacturing processes that require oxidation or annealing. These processes include the growth of oxide layers on silicon wafers for the semiconductor industry, originally described by the Deal-Grove model, and for the formation of passivation layers used to improve the light capture ability of crystalline photovoltaic cells. Several methods and technologies can be employed to generate ultra high purity steam, including pyrolysis, bubbling, direct liquid injection and purified steam generation. The level of purity, or the relative lack of contamination, affects the quality of the oxide layer or annealed surface. The method of delivery affects growth rate, uniformity and electrical performance. Oxidation and annealing are common steps in the manufacture of such devices as microelectronics and solar cells.

Eutectic bonding

Eutectic bonding, also referred to as eutectic soldering, describes a wafer bonding technique with an intermediate metal layer that can produce a eutectic system. Those eutectic metals are alloys that transform directly from solid to liquid state, or vice versa from liquid to solid state, at a specific composition and temperature without passing a two-phase equilibrium, i.e. liquid and solid state. The fact that the eutectic temperature can be much lower than the melting temperature of the two or more pure elements can be important in eutectic bonding.

Lely method

The Lely method or Lely process is a crystal growth technology used for producing silicon carbide crystals for the semi-conductor industry. The patent for this process was filed in the Netherlands in 1954 and in the United States in 1955 by Jan Anthony Lely of Philips Electronics. The patent was subsequently granted on 30 September 1958, and was refined by D.R. Hamilton et al. in 1960, and by V.P. Novikov and V.I. Ionov in 1968.

A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.

Epitaxial graphene growth on silicon carbide (SiC) by thermal decomposition is a methods to produce large-scale few-layer graphene (FLG). Graphene is one of the most promising nanomaterials for the future because of its various characteristics, like strong stiffness and high electric and thermal conductivitiy. Still, reproducible production of Graphene is difficult, thus lots of different techniques have been developed. The main advantage of epitaxial graphene growth on silicon carbide over other techniques is to obtain graphene layers directly on a semiconducting or semi-insulating substrate which is commercially available.

References

  1. SiC Materials and Devices. Academic. 2 July 1998. p. 56. ISBN   978-0-08-086450-1 . Retrieved 12 July 2013.
  2. Safa Kasap; Peter Capper (1 January 2006). Springer Handbook of Electronic and Photonic Materials. Springer. p. 245. ISBN   978-0-387-29185-7 . Retrieved 12 July 2013.

See also