Boule (crystal)

Last updated
Crystallization
Process-of-Crystallization-200px.png
Fundamentals
Crystal  · Crystal structure  · Nucleation
Concepts
Crystallization  · Crystal growth
Recrystallization  · Seed crystal
Protocrystalline  · Single crystal
Methods and technology
Boules
Bridgman–Stockbarger method
Crystal bar process
Czochralski method
Epitaxy  · Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting
Monocrystalline silicon boule Monokristalines Silizium fur die Waferherstellung.jpg
Monocrystalline silicon boule

A boule is a single-crystal ingot produced by synthetic means. [1]

A boule of silicon is the starting material for most of the integrated circuits used today. In the semiconductor industry synthetic boules can be made by a number of methods, such as the Bridgman technique [2] and the Czochralski process, which result in a cylindrical rod of material.

In the Czochralski process a seed crystal is required to create a larger crystal, or ingot. This seed crystal is dipped into the pure molten silicon and slowly extracted. The molten silicon grows on the seed crystal in a crystalline fashion. As the seed is extracted the silicon solidifies and eventually a large, cylindrical boule is produced. [3]

A semiconductor crystal boule is normally cut into circular wafers using an inside hole diamond saw or diamond wire saw, and each wafer is lapped and polished to provide substrates suitable for the fabrication of semiconductor devices on its surface. [4]

The process is also used to create sapphires, which are used for substrates in the production of blue and white LEDs, optical windows in special applications and as the protective covers for watches. [5]

Related Research Articles

Semiconductor device fabrication Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically the metal–oxide–semiconductor (MOS) devices used in the integrated circuit (IC) chips that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

Wafer (electronics)

In electronics, a wafer is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. It undergoes many microfabrication processes, such as doping, ion implantation, etching, thin-film deposition of various materials, and photolithographic patterning. Finally, the individual microcircuits are separated by wafer dicing and packaged as an integrated circuit.

Zone melting

Zone melting is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by John Desmond Bernal and further developed by William Gardner Pfann in Bell Labs as a method to prepare high purity materials, mainly semiconductors, for manufacturing transistors. Its first commercial use was in germanium, refined to one atom of impurity per ten billion, but the process can be extended to virtually any solute-solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.

Czochralski method Method of crystal growth

The Czochralski method, also Czochralski technique or Czochralski process, is a method of crystal growth used to obtain single crystals of semiconductors, metals, salts and synthetic gemstones. The method is named after Polish scientist Jan Czochralski, who invented the method in 1915 while investigating the crystallization rates of metals. He made this discovery by accident: instead of dipping his pen into his inkwell, he dipped it in molten tin, and drew a tin filament, which later proved to be a single crystal.

Ingot

An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency, or as a currency reserve, as with gold bars.

Epitaxy

Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline substrate. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the crystalline substrate is defined in terms of the orientation of the crystal lattice of each material. For epitaxial growth, the new layer must be crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Amorphous growth or multicrystalline growth with random crystal orientation does not meet this criterion. For most technological applications, single domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred.

Bridgman–Stockbarger method Method of crystallization

The Bridgman–Stockbarger method, or Bridgman–Stockbarger technique, is named after Harvard physicist Percy Williams Bridgman (1882–1961) and MIT physicist Donald C. Stockbarger (1895–1952). The method includes two similar but distinct techniques primarily used for growing boules, but which can be used for solidifying polycrystalline ingots as well.

Seed crystal

A seed crystal is a small piece of single crystal or polycrystal material from which a large crystal of typically the same material is to be grown in a laboratory. Used to replicate material, the use of seed crystal to promote growth avoids the otherwise slow randomness of natural crystal growth and allows manufacture on a scale suitable for industry.

Planar process Process used to make microchips

The planar process is a manufacturing process used in the semiconductor industry to build individual components of a transistor, and in turn, connect those transistors together. It is the primary process by which silicon integrated circuit chips are built. The process utilizes the surface passivation and thermal oxidation methods.

An epitaxial wafer is a wafer of semiconducting material made by epitaxial growth (epitaxy) for use in photonics, microelectronics, spintronics, or photovoltaics. The epi layer may be the same material as the substrate, typically monocrystaline silicon, or it may be a more exotic material with specific desirable qualities.

Float-zone silicon

Float-zone silicon is very pure silicon obtained by vertical zone melting. The process was developed at Bell Labs by Henry Theuerer in 1955 as a modification of a method developed by William Gardner Pfann for germanium. In the vertical configuration molten silicon has sufficient surface tension to keep the charge from separating. Avoidance of the necessity of a containment vessel prevents contamination of the silicon.

Microfabrication

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Verneuil method Manufacturing process of synthetic gemstones

The Verneuil method, also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It is primarily used to produce the ruby, sapphire and padparadscha varieties of corundum, as well as the diamond simulants rutile and strontium titanate. The principle of the process involves melting a finely powdered substance using an oxyhydrogen flame, and crystallising the melted droplets into a boule. The process is considered to be the founding step of modern industrial crystal growth technology, and remains in wide use to this day.

Etching (microfabrication) Technique in microfabrication used to remove material and create structures

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module, and every wafer undergoes many etching steps before it is complete.

A micropipe, also called a micropore, microtube, capillary defect or pinhole defect, is a crystallographic defect in a single crystal substrate. Minimizing the presence of micropipes is important in semiconductor manufacturing, as their presence on a wafer can result in the failure of integrated circuits made from that wafer.

Ribbon solar cells are a 1970s technology most recently sold by Evergreen Solar, among other manufacturers.

Monocrystalline silicon, more often called single-crystal silicon, in short mono c-Si or mono-Si, is the base material for silicon-based discrete components and integrated circuits used in virtually all modern electronic equipment. Mono-Si also serves as a photovoltaic, light-absorbing material in the manufacture of solar cells.

Polycrystalline silicon

Polycrystalline silicon, or multicrystalline silicon, also called polysilicon or poly-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry.

Rubicon Technology, Inc. is an American company specializing in sapphire crystal growth technology and large-diameter sapphire based on improved Kyropoulos technology called ES2. Improvements to the Kyropoulos technology were developed in its Illinois-based crystal growth facilities. The company has been producing the industry's first 12-inch sapphire wafer since 2010, and has shipped millions of wafers and core products in sizes from 2" to 12" since 2001. The company's markets have been focused on the LED industry and the production of silicon on sapphire (SOS) wafers for integrated circuits (RFICs), as well as on high quality optical and industrial applications for high performance sapphire. The company's current market capitalization is down from around US$ 200 million to $13 million, with an enterprise value from around US$ 160 million to less than zero.

Kyropoulos method

The Kyropoulos method, or Kyropoulos technique, is a method of bulk crystal growth used to obtain single crystals. It is named for Spyro Kyropoulos, who proposed the technique in 1926 as a method to grow brittle alkali halide and alkali earth metal crystals for precision optics.

References

  1. Kimoto, Tsunenobu; Cooper, James A. (24 November 2014). Fundamentals of Silicon Carbide Technology: Growth, Characterization. ISBN   9781118313527 . Retrieved March 1, 2017.
  2. Dhanaraj, Govindhan; Byrappa, Kullaiah; Prasad, Vishwanath; Dudley, Michael (2010). Springer Handbook of Crystal Growth. ISBN   9783540747611 . Retrieved February 25, 2017.
  3. Rea, Samuel N. (1978). "Continuous Czochralski Process Development" . Retrieved March 1, 2017.
  4. BOSE (2013). IC Fabrication Technology. McGraw Hill Education (India) Pvt Ltd. p. 53. ISBN   978-1-259-02958-5.
  5. J.-P. Colinge (29 February 2004). Silicon-on-Insulator Technology: Materials to VLSI: Materials to Vlsi. Springer Science & Business Media. p. 12. ISBN   978-1-4020-7773-9.