Flux method

Last updated
Crystallization
Process-of-Crystallization-200px.png
Fundamentals
Concepts
Methods and technology

The flux method is a crystal growth method where starting materials are dissolved in a solvent (flux), and are precipitated out to form crystals of a desired compound. The flux lowers the melting point of the desired compound, analogous to a wet chemistry recrystallization. [1] The flux is molten in a highly stable crucible that does not react with the flux. Metal crucibles, such as platinum, titanium, and niobium are used for the growth of oxide crystals. Ceramic crucibles, such as alumina, zirconia, and boron nitride are used for the growth of metallic crystals. [2] For air-sensitive growths, contents are sealed in ampoules or placed in atmosphere controlled furnaces.

Contents

Choice of flux

Oxide fluxes are often combined to reduce volatility, viscosity, and reactivity towards the crucibles. Metallic fluxes aren't typically combined, [3] as they do not suffer from the same volatility, viscosity, and reactivity issues. An ideal flux should have the following properties: [2]

Common Fluxes
Metallic FluxOxide Flux
FluxMelting Point (°C)Boiling Point (°C)FluxMelting Point (°C)Boiling Point (°C)
Aluminum 6602470 Lead(II) Oxide 8881477
Bismuth 2711564 Lead(II) Fluoride 8241293
Gallium 302400 Bismuth (III) Oxide 8171890
Indium 1572072 Lithium Oxide 14382600
Tin 2322602 Molybdenum Trioxide 8021152
Lead 3281749 Potassium Fluoride 8581502

Furnace procedure

The growth (starting materials, flux, and crucible) are heated to form a complete liquid solution. The growth is cooled to a temperature where the solution is fully saturated. Further cooling causes crystals to precipitate from the solution, lowering the concentration of starting materials in solution, and lowering the temperature where the solution is fully saturated. The process is repeated, decreasing temperature and precipitating more crystals. The process is then stopped at a desired temperature, and the growth is removed from the furnace. Practically, the flux method is done by placing the growth into a programmable furnace:[ citation needed ]

  1. Ramp - The furnace is heated from an initial temperature to a maximum temperature, where the growth forms a complete liquid solution.
  2. Dwell - The furnace is maintained at the maximum temperature to homogenize the solution.
  3. Cool - The furnace is cooled to a desired temperature over a specified rate or time.
  4. Removal - The growth is removed from the furnace. The growth can be quenched, centrifuged, or simply removed if already at room temperature.

Additional steps may be added to this basic temperature profile, such as additional dwells or different cooling rates over different points of the cool. Crystallization can occur through spontaneous nucleation, encouragement with a seed, or through mechanical stress.[ citation needed ]

Air-sensitive growths

Titanium-based crystals have turned "golden" after air exposure at 400degC, due to a thin layer of titanium nitride. PrePostAnneal.png
Titanium-based crystals have turned "golden" after air exposure at 400°C, due to a thin layer of titanium nitride.

The growth of intermetallic compounds are air-sensitive.[ citation needed ] Oxygen in air reacts with heated metals to form metal oxides. Less commonly, nitrogen in the air can react with heated metals to form metal nitrides. Intermetallic growths are sealed under vacuum or inert-atmosphere ampoules to prevent oxidation. These ampoules are made out of quartz glass. The ampoules limits the maximum temperature of the growth to the melting point of the specific quartz glass, since it's typically lower than the melting point of the crucible or starting materials. One method of ampoule preparation is as follows:[ citation needed ]

Air-sensitive intermetallic flux growth progress FluxGrowthAmpoules2.png
Air-sensitive intermetallic flux growth progress
  1. A quartz glass tube is filled with: quartz glass wool; a crucible containing starting material (grey) and flux (green); a filter; an upside-down crucible; and more quartz glass wool.
  2. A thin neck is formed above the tube's contents using a blowtorch. The tube is attached to a closed system containing a vacuum pump and an inert gas canister. The air in the tube is removed using the vacuum pump, and then the tube is filled with inert gas such as argon. This process is repeated to remove as much oxygen and water vapor from the tube as possible.
  3. The ampoule is filled with inert gas, and the neck is sealed using a blowtorch. The ampoule is often placed inside a larger crucible to keep it upright. The ampoule and crucible are placed into the furnace, and heated to the maximum temperature
  4. The furnace is maintained at the maximum temperature and the growth forms a homogenous liquid mixture.
  5. The furnace is cooled, and crystals precipitate out of solution. The solution becomes more flux-rich (less grey).
  6. At a specific temperature, the ampoule is removed from the furnace, and immediately flipped and spun in a centrifuge. The flux-rich (even less grey) solution passes through the filter, while the crystals cannot. The solution solidifies during the centrifuging, and the ampoule is allowed to cool to room temperature. The ampoule is broken, and the crystals are removed.

Flux separation

A crystal grown from gallium flux, with flux attached to the surface GaBased.png
A crystal grown from gallium flux, with flux attached to the surface

After crystallization, often some solidified flux remains on the surface or inside the desired crystal. This flux may cause defects in the crystal due to the different thermal expansivities of the flux and crystal. [4] A solvent (typically an acid or a base) can dissolve the flux, but it's difficult to find a solvent that doesn't also dissolve the crystal. The flux can be removed mechanically using a blade or drill. If the crystal and flux have significantly different boiling points, the flux may be removed with evaporation. Flux can also be removed through recrystallization through use of a seed in the liquid phase, leaving the flux behind as the crystals accumulate.

The removal of excess flux is important to assess a crystals properties, as the flux can affect measurements. For example, tin and lead super conduct at low temperatures, [5] if a sample has tin or lead flux superconductivity can be observed even if the desired crystal is not a superconductor.

See also

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, opacity, and luster, but may have properties that differ from those of the pure metals, such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Solder</span> Alloy used to join metal pieces

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

<span class="mw-page-title-main">Cubic zirconia</span> The cubic crystalline form of zirconium dioxide

Cubic zirconia (abbreviated CZ) is the cubic crystalline form of zirconium dioxide (ZrO2). The synthesized material is hard and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirconium silicate (ZrSiO4). It is sometimes erroneously called cubic zirconium.

Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials. It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and chemical vapour depostion, make solid-state materials. Solids can be classified as crystalline or amorphous on basis of the nature of order present in the arrangement of their constituent particles. Their elemental compositions, microstructures, and physical properties can be characterized through a variety of analytical methods.

<span class="mw-page-title-main">Differential scanning calorimetry</span> Thermoanalytical technique

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Crucible</span> Container in which substances are heated

A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperatures high enough to melt or otherwise alter its contents.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a supersaturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

<span class="mw-page-title-main">Refractory</span> Materials resistant to decomposition under high temperatures

In materials science, a refractory is a material that is resistant to decomposition by heat or chemical attack that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

<span class="mw-page-title-main">Bridgman–Stockbarger method</span> Method of crystallization

The Bridgman–Stockbarger method, or Bridgman–Stockbarger technique, is named after physicist Percy Williams Bridgman (1882–1961) and physicist Donald C. Stockbarger (1895–1952). The method includes two similar but distinct techniques primarily used for growing boules, but which can be used for solidifying polycrystalline ingots as well.

<span class="mw-page-title-main">Crystallization</span> Process by which a solid with a highly organized atomic or molecular structure forms

Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

<span class="mw-page-title-main">Vacuum furnace</span>

A vacuum furnace is a type of furnace in which the product in the furnace is surrounded by a vacuum during processing. The absence of air or other gases prevents oxidation, heat loss from the product through convection, and removes a source of contamination. This enables the furnace to heat materials to temperatures as high as 3,000 °C (5,432 °F) with select materials. Maximum furnace temperatures and vacuum levels depend on melting points and vapor pressures of heated materials. Vacuum furnaces are used to carry out processes such as annealing, brazing, sintering and heat treatment with high consistency and low contamination.

<span class="mw-page-title-main">Hydrothermal synthesis</span> Techniques for crystallizing substances

Hydrothermal synthesis includes the various techniques of crystallizing substances from high-temperature aqueous solutions at high vapor pressures; also termed "hydrothermal method". The term "hydrothermal" is of geologic origin. Geochemists and mineralogists have studied hydrothermal phase equilibria since the beginning of the twentieth century. George W. Morey at the Carnegie Institution and later, Percy W. Bridgman at Harvard University did much of the work to lay the foundations necessary to containment of reactive media in the temperature and pressure range where most of the hydrothermal work is conducted.

<span class="mw-page-title-main">Forest glass</span>

Forest glass is late medieval glass produced in northwestern and central Europe from approximately 1000–1700 AD using wood ash and sand as the main raw materials and made in factories known as glasshouses in forest areas. It is characterized by a variety of greenish-yellow colors, the earlier products often being of crude design and poor quality, and was used mainly for everyday vessels and increasingly for ecclesiastical stained glass windows. Its composition and manufacture contrast sharply with Roman and pre-Roman glassmaking centered on the Mediterranean and contemporaneous Byzantine and Islamic glass making to the east.

<span class="mw-page-title-main">Micro-pulling-down</span> Crystal growth technique

The micro-pulling-down (μ-PD) method is a crystal growth technique based on continuous transport of the melted substance through micro-channel(s) made in a crucible bottom. Continuous solidification of the melt is progressed on a liquid/solid interface positioned under the crucible. In a steady state, both the melt and the crystal are pulled-down with a constant velocity.

<span class="mw-page-title-main">Recrystallization (chemistry)</span> Separation and purification process of crystalline solids

In chemistry, recrystallization is a technique used to purify chemicals. By dissolving a mixture of a compound and impurities in an appropriate solvent, either the desired compound or impurities can be removed from the solution, leaving the other behind. It is named for the crystals often formed when the compound precipitates out. Alternatively, recrystallization can refer to the natural growth of larger ice crystals at the expense of smaller ones.

References

  1. Byrappa, K.; Ohachi, Tadashi (Eds.) (2003). "17.2.4 Flux method". Crystal Growth Technology. Norwich, N.Y.: William Andrew Pub. p. 567. ISBN   3-540-00367-3. Components of the gem materials desired in a single crystal form are dissolved in a flux (solvent).
  2. 1 2 Tachibana, Makoto (2017). Beginner's Guide to Flux Crystal Growth. Tsukuba, Ibaraki Japan: Springer. pp. 61–87. ISBN   978-4-431-56586-4.
  3. Kanatzidis, Mercouri G.; Pöttgen, Rainer; Jeitschko, Wolfgang (2005-11-04). "The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds". Angewandte Chemie International Edition. 44 (43): 6996–7023. doi:10.1002/anie.200462170. ISSN   1433-7851.
  4. Wolf, Thomas (July 2012). "Flux separation methods for flux-grown single crystals". Philosophical Magazine. 92 (19–21): 2458–2465. Bibcode:2012PMag...92.2458W. doi:10.1080/14786435.2012.685193. ISSN   1478-6435. S2CID   137541564.
  5. Buzea, Cristina; Robbie, Kevin (2005-01-01). "Assembling the puzzle of superconducting elements: a review". Superconductor Science and Technology. 18 (1): R1–R8. arXiv: cond-mat/0410302 . doi:10.1088/0953-2048/18/1/R01. ISSN   0953-2048.